HAO Guanghua, SU Jie. A study on the dynamic tie points ASI algorithm in the Arctic Ocean[J]. Acta Oceanologica Sinica, 2015, 34(11): 126-135. doi: 10.1007/s13131-015-0659-y
Citation: HAO Guanghua, SU Jie. A study on the dynamic tie points ASI algorithm in the Arctic Ocean[J]. Acta Oceanologica Sinica, 2015, 34(11): 126-135. doi: 10.1007/s13131-015-0659-y

A study on the dynamic tie points ASI algorithm in the Arctic Ocean

doi: 10.1007/s13131-015-0659-y
  • Received Date: 2015-02-16
  • Rev Recd Date: 2015-04-16
  • Sea ice concentration is an important parameter for polar sea ice monitoring. Based on 89 GHz AMSR-E (Advanced Microwave Scanning Radiometer for Earth Observing System) data, a gridded high-resolution passive microwave sea ice concentration product can be obtained using the ASI (the Arctic Radiation And Turbulence Interaction Study (ARTIST) Sea Ice) retrieval algorithm. Instead of using fixed-point values, we developed ASI algorithm based on daily changed tie points, called as the dynamic tie point ASI algorithm in this study. Here the tie points are expressed as the brightness temperature polarization difference of open water and 100% sea ice. In 2010, the yearly-averaged tie points of open water and sea ice in Arctic are estimated to be 50.8 K and 7.8 K, respectively. It is confirmed that the sea ice concentrations retrieved by the dynamic tie point ASI algorithm can increase (decrease) the sea ice concentrations in low-value (high-value) areas. This improved the sea ice concentrations by present retrieval algorithm from microwave data to some extent. Comparing with the products using fixed tie points, the sea ice concentrations retrieved from AMSR-E data by using the dynamic tie point ASI algorithm are closer to those obtained from MODIS (Moderate-resolution Imaging Spectroradiometer) data. In 40 selected cloud-free sample regions, 95% of our results have smaller mean differences and 75% of our results have lower root mean square (RMS) differences compare with those by the fixed tie points.
  • loading
  • Bi Haibo, Huang Haijun, Su Qiao, et al. 2014. An Arctic sea ice thickness variability revealed from satellite altimetric measurements. Acta Oceanologica Sinica, 33(11): 134-140
    Cavalieri D J, Gloersen P, Campbell W J. 1984. Determination of seaice parameters with the Nimbus 7 SMMR. Journal of Geophysical Research, 89(D4): 5355-5369
    Cavalieri D J, St Germain K M. 1995. Arctic sea ice research with satel-lite passive microwave radiometers. IEEE Geoscience and Re-mote Sensing Society Newsletter, 97(1): 6-12
    Cavalieri D J, Markus T, Hall D K, et al. 2006. Assessment of EOS-AQUAAMSR-EArctic sea ice concentrations using landsat-7 and airborne microwave imagery. IEEE Transactions on Geoscience and Remote Sensing, 44(11): 3057-3069
    Cavalieri D J, Markus T, Hall D K, et al. 2010. Assessment of AMSR-E Antarctic winter sea-ice concentrations using Aqua MODIS. IEEE Transactions on Geoscience and Remote Sensing, 48(9): 3331-3339
    Comiso J C. 1995. SSM/I sea ice concentrations using the bootstrap algorithm. National Aeronautics and Space Administration. NASA RefPubl, RP 1380, 49
    Comiso J C, Kwok R. 1996. Surface and radiative characteristics of the summer Arctic sea ice cover from multisensor satellite observa-tions. Journal of Geophysical Research, 101(C12): 28397-28416
    Comiso J C, Cavalieri D J, Markus T. 2003. Sea ice concentration, ice temperature, and snow depth using AMSR-E data. IEEE Trans-actions on Geoscience and Remote Sensing, 41(2): 243-252
    de Vernal A, Gersonde R, Goosse H, et al. 2013. Sea ice in the paleo-climate system: the challenge of reconstructing sea ice from proxies—an introduction. Quaternary Science Reviews, 79: 1-8
    Eastwood S, Larsen K R, Lavergne T, et al. 2011. Global Sea Ice Con-centration Reprocessing Product User Manual, Version 1.3, EU-METSAT
    Emery W J, Fowler C, Maslanik J. 1994. Arctic sea ice concentrations from special sensor microwave imager and advanced very high resolution radiometer satellite data. Journal of Geophysical Re-search, 99(C9): 18329-18342
    Gloersen P, Cavalieri D J. 1986. Reduction of weather effects in the calculation of sea ice concentration from microwave radiances. Journal of Geophysical Research, 91(C3): 3913-3919
    Han H, Lee H. 2007. Compartive study of sea ice concentration by us-ing DMSP SSM/I, Aqua AMSR-E and Kompsat-1 EOC. In: IEEE InternationalGeoscience and Remote Sensing Symposium, 2007. IGARSS 2007. Barcelona, Spain: IEEE, 4249-4252
    Kaleschke L, Lüpkes C, Vihma T, et al. 2001. SSM/I sea ice remote sensing for mesoscale ocean-atmosphere interaction analysis: Ice and icebergs. Canadian Journal of Remote Sensing, 27(5): 526-537
    Kern S. 2001. A new algorithm to retrieve the sea ice concentration using weather-corrected 85GHz SSM/I measurements. Logos-Verlag, Institute of Environmental Physics, Bremen, Germany
    Kern S, Heygster G. 2001. Sea-ice concentration retrieval in the Ant-arctic based on the SSM/I 85. 5 GHz polarization. Annals of Glaciology, 33(1): 109-114
    KernS, Kaleschke L, Clausi D A. 2003. A comparison of two 85-GHz SSM/I ice concentration algorithms with AVHRR and ERS-2 SAR imagery. IEEE Transactions on Geoscience and Remote Sensing, 41(10): 2294-2306
    Kern S. 2004. A new method for medium-resolution sea ice analysis using weather-influence corrected Special Sensor Microwave/Imager 85 GHz data. International Journal of Re-mote Sensing, 25(21): 4555-4582
    Liang Shunlin, Strahler A, Walthall C. 1998. Retrieval of land surface Albedo from satellite observations: A simulation study. In:IEEE International Geoscience and Remote Sensing Symposium Proceedings. Seattle, WA: IEEE, 1286-1288
    Liu Jiping, Curry J A, Martinson D G. 2004. Interpretation of recent Antarctic sea ice variability. Geophysical Research Letters, 31(2)
    Markus T, Cavalieri D J. 2000. An enhancement of the NASA Team sea ice algorithm. IEEE Transactions on Geoscience and Re-mote Sensing, 38(3): 1387-1398
    Meier W N. 2005. Comparison of passive microwave ice concentra-tion algorithm retrievals with AVHRR imagery in Arctic peri-pheral seas. IEEE Transactions on Geoscience and Remote Sensing, 43(6): 1324-1337
    Rind D, Healy R, ParkinsonC, et al. 1995. The role of seaice in 2×CO2 climate model sensitivity. Part I: The total influence of sea ice thickness and extent. Journal of Climate, 8(3): 449-463
    Serreze M C, Maslanik J A, Scambos T A, et al. 2003. A record minim-um arctic sea ice extent and area in 2002. Geophysical Re-search Letters, 30(3): 1110
    Spreen G. 2004. Meereisfernerkundung Mit Dem Satellitengestützten Mikrowellenradiometer AMSR (-E)—Bestimmung der Eiskonzentration und Eiskante unter Verwendung-der-89-GHz-Kan.le, Diplomarbeit [dissertation] (in German). Ham-burg, Germany: Universityof Hamburg
    Spreen G, Kaleschke L, Heygster G. 2008. Sea ice remote sensing us-ing AMSR-E 89-GHz channels. Journal of Geophysical Re-search, 113(C2)
    Steffen K, Schweiger A. 1991. NASA team algorithm for sea ice con-centration retrieval from Defense Meteorological Satellite Pro-gram special sensor microwave imager: Comparison with Landsat satellite imagery. Journal of Geophysical Research, 96(C12): 21971-21987
    Svendsen E, Matzler C, Grenfell T C. 1987. A model for retrieving total sea ice concentration from a spaceborne dual-polarized pass-ive microwave instrument operating near 90 GHz. Internation-al Journal of Remote Sensing, 8(10): 1479-1487
    Su Jie, Hao Guanghua, Ye Xinxin, et al. 2013. The experiment and val-idation of sea ice concentration AMSR-E retrieval algorithm in polar region. Journal of Remote Sensing (in Chinese), 173(3): 495-513
    Vavrus S, Harrison S P.2003. The impact of sea-ice dynamics on the Arctic climate system. Climate Dynamics, 20(7-8): 741-757
    Wiebe H, Heygster G, Markus T.2009. Comparison of the ASI ice con-centration algorithm with Landsat-7 ETM+ and SAR imagery. IEEE Transactions on Geoscience and Remote Sensing, 47(9): 3008-3015
    Ye Xinxin, Su Jie, Wang Yang, et al. 2011.Assessment of AMSR-E sea ice concentration in ice margin zone using MODIS data. In: 2011 International Conference onRemote Sensing, Environ-ment and Transportation Engineering (RSETE). Nanjing, China: IEEE, 3869-3873
    Zhang S G. 2012. Sea ice concentration algorithm and study on the physical process about sea ice and melt-pond change in cent-ral Arctic [dissertation]. Qingdao, China: Ocean University of China
    Zhang Shugang, Zhao Jinping, Frey K, et al. 2013. Dual-polarized ra-tio algorithm for retrieving Arctic sea ice concentration from passive microwave brightness temperature. Journal of Oceano-graphy, 69(2): 215-227
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2668) PDF downloads(899) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return