Citation: | MA Wentao, YANG Xiaofeng, YU Yang, LIU Guihong, LI Ziwei, JING Cheng. Impact of rain-induced sea surface roughness variations on salinity retrieval from the Aquarius/SAC-D satellite[J]. Acta Oceanologica Sinica, 2015, 34(7): 89-96. doi: 10.1007/s13131-015-0660-5 |
Bliven L F, Sobieski P W, Craeye C. 1997. Rain generated ring-waves: measurements and modelling for remote sensing. IntJRemote Sens, 18(1): 221-228
|
Boutin J, Martin N, Reverdin G, et al. 2013. Sea surface freshening inferred from SMOS and ARGO salinity: impact of rain. Ocean Sci, 9(1): 183-192
|
Boutin J, Martin N, Reverdin G, et al. 2014. Sea surface salinity under rain cells: SMOS satellite and in situ drifters observations. Journal of Geophysical Research: Oceans, 119(8): 5533-5545
|
Boutin J, Martin N, Yin Xiaobin, et al. 2012. First assessment of SMOS data over open ocean: Part II-Sea surface salinity. IEEE Trans- Geosci Remote Sens, 50(5): 1662-1675
|
Chassignet E P, Hurlburt H E, Metzger E J, et al. 2009. US GODAE: global ocean prediction with the HYbrid coordinate ocean model (HYCOM). Oceanography, 22(2): 64-75
|
Contreras R F, Plant W J. 2006. Surface effect of rain on microwave backscatter from the ocean: Measurements and modeling. Journal of Geophysical Research: Oceans (1978-2012), 111(C8): C08019
|
Craeye C, Sobieski P W, Bliven L F. 1997. Scattering by artificial wind and rain roughened water surfaces at oblique incidences. IntJRemote Sens, 18(10): 2241-2246
|
Durden S L, Vesecky J F. 1985. A physical radar cross-section model for a wind-driven sea with swell. IEEE JOceanic Eng, 10(4): 445-451
|
Felton C S, Subrahmanyam B, Murty V S N, et al. 2014. Estimation of the barrier layer thickness in the Indian Ocean using Aquarius Salinity. Journal of Geophysical Research: Oceans, 119(7): 4200-4213
|
Font J, Camps A, Borges A, et al. 2010. SMOS: The challenging sea surface salinity measurement from space. Proc IEEE, 98(5): 649-665
|
Johnson J T, Zhang Min. 1999. Theoretical study of the small slope approximation for ocean polarimetric thermal emission. IEEE Trans Geosci Remote Sens, 37(5): 2305-2316
|
Kerr Y H, Waldteufel P, Wigneron J-P, et al. 2010. The SMOS mission: New tool for monitoring key elements ofthe global water cycle. Proc IEEE, 98(5): 666-687
|
Lagerloef G, Colomb F R, Le Vine D, et al. 2008. The Aquarius/SAC-D mission: Designed to meet the salinity remote-sensing challenge. Oceanography, 21(1): 68-81
|
Le Vine D M, Lagerloef G S E, Torrusio S E. 2010. Aquarius and remote sensing of sea surface salinity from space. Proc IEEE, 98(5): 688-703
|
Ma Wentao, Yang Xiaofeng, Liu Guihong, et al. 2014. An Improved Model for L-Band Brightness Temperature Estimation Over Foam-Covered Seas Under Low and Moderate Winds. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(9): 3784-3793
|
Meissner T, Wentz F J. 2004. The complex dielectric constant of pure and sea water from microwave satellite observations. IEEE Trans Geosci Remote Sens, 42(9): 1836-1849
|
Qu Tangdong, Song Y T, Maes C. 2014. Sea surface salinity and barrier layer variability in the equatorial Pacific as seen from Aquarius and Argo. Journal of Geophysical Research: Oceans, 119(1): 15-29
|
Reynolds R W, Smith T M, Liu Chunying, et al. 2007. Daily high-resolution- blended analyses for sea surface temperature. Journal of Climate, 20(22): 5473-5496
|
Sobieski P, Craeye C, Bliven L F. 2009. A relationship between rain radar reflectivity and height elevation variance of ringwaves due to the impact of rain on the sea surface. Radio Science, 44(3): CiteID RS3005
|
Tang Wenqing, Yueh S, Fore A, et al. 2013. The rain effect on Aquarius' L-band sea surface brightness temperature and radar backscatter. Remote Sens Environ, 137: 147-157
|
Tang Wenqing, Yueh S H, Fore A G, et al. 2014. Uncertainty of Aquarius sea surface salinity retrieved under rainy conditions and its implication on the water cycle study. Journal of Geophysical Research: Oceans, 119(8): 4821-4839
|
Terray L, Corre L, Cravatte S, et al. 2012. Near-surface salinity as nature's rain gauge to detect human influence on the tropical water cycle. Journal of Climate, 25(3): 958-977
|
Wentz F J. 2005. The effect of clouds and rain on Aquarius salinity retrieval. Remote Sensing System Technical Memorandum, 3031805
|
Wentz F J, Le Vine David M. 2013. Aquarius Salinity Retrieval Algorithm. Algorithm Theoretical Basis Document
|
Yin Xiaobin, Boutin J, Martin N, et al. 2012a. Optimization of L-band sea surface emissivity models deduced from SMOS data. IEEE Trans Geosci Remote Sens, 50(5): 1414-1426
|
Yin Xiaobin, Boutin J, Spurgeon P. 2012b. First assessment of SMOS data over open ocean: Part I—Pacific Ocean. IEEE Trans Geosci Remote Sens, 50(5): 1648-1661
|
Yueh S H, Dinardo S J, Fore A G, et al. 2010. Passive and active L-band microwave observations and modeling of ocean surface winds. IEEE Trans Geosci Remote Sens, 48(8): 3087-3100
|
Yueh S H, Tang Wenqing, Fore A G, et al. 2013. L-band passive and active microwave geophysical model functions of ocean surface winds and applications to Aquarius retrieval. IEEE Trans Geosci Remote Sens, 51(9): 4619-4632
|
1. | Vladimir N. Kudryavtsev, Pavel D. Pivaev. Mixed layer depth parameterization and ocean surface cooling induced by tropical cyclones. Ocean Modelling, 2025, 195: 102514. doi:10.1016/j.ocemod.2025.102514 | |
2. | Anandh Thankaswamy, Tao Xian, Lian-Ping Wang. Typhoons and their upper ocean response over South China Sea using COAWST model. Frontiers in Earth Science, 2023, 11 doi:10.3389/feart.2023.1102957 | |
3. | Han Zhang, Mengyuan Jing, Haoyu Zhang, et al. Deep learning approach for forecasting sea surface temperature response to tropical cyclones in the Western North Pacific. Deep Sea Research Part I: Oceanographic Research Papers, 2023, 197: 104042. doi:10.1016/j.dsr.2023.104042 | |
4. | Xinyuan Liu. Drug trade analysis model based on location judgment. Highlights in Science, Engineering and Technology, 2022, 11: 27. doi:10.54097/hset.v11i.1263 | |
5. | Dailé Avila-Alonso, Jan M. Baetens, Rolando Cardenas, et al. Oceanic response to the consecutive Hurricanes Dorian and Humberto (2019) in the Sargasso Sea. Natural Hazards and Earth System Sciences, 2021, 21(2): 837. doi:10.5194/nhess-21-837-2021 | |
6. | Dailé Avila-Alonso, Jan M. Baetens, Rolando Cardenas, et al. Oceanic response to Hurricane Irma (2017) in the Exclusive Economic Zone of Cuba and the eastern Gulf of Mexico. Ocean Dynamics, 2020, 70(5): 603. doi:10.1007/s10236-020-01350-y | |
7. | Xin Liu, Jun Wei, Da‐Lin Zhang, et al. Parameterizing Sea Surface Temperature Cooling Induced by Tropical Cyclones: 1. Theory and An Application to Typhoon Matsa (2005). Journal of Geophysical Research: Oceans, 2019, 124(2): 1215. doi:10.1029/2018JC014117 | |
8. | Xin Liu, Da‐Lin Zhang, Jian Guan. Parameterizing Sea Surface Temperature Cooling Induced by Tropical Cyclones: 2. Verification by Ocean Drifters. Journal of Geophysical Research: Oceans, 2019, 124(2): 1232. doi:10.1029/2018JC014118 | |
9. | Dailé Avila-Alonso, Jan M. Baetens, Rolando Cardenas, et al. The impact of hurricanes on the oceanographic conditions in the Exclusive Economic Zone of Cuba. Remote Sensing of Environment, 2019, 233: 111339. doi:10.1016/j.rse.2019.111339 |