Citation: | BI Fan, SONG Jinbao, WU Kejian, XU Yao. Evaluation of the simulation capability of the Wavewatch Ⅲ model for Pacific Ocean wave[J]. Acta Oceanologica Sinica, 2015, 34(9): 43-57. doi: 10.1007/s13131-015-0737-1 |
Abdalla S, Bidlot J R. 2002. Wind gustiness and air density effects and other key changes to wave model in CY25R1. Rep, Research Department, ECMWF, Reading, UK
|
Ardhuin F, Chapron B, Collard F. 2009. Observation of swell dissipation across oceans. Geophysical Research Letters, 36(6): doi: 10.1029/2008GL037030
|
Ardhuin F, Jenkins A D. 2006. On the interaction of surface waves and upper ocean turbulence. Journal of Physical Oceanography, 36(3): 551-557
|
Ardhuin F, Rogers E, Babanin A V, et al. 2010. Semiempirical dissipation source functions for ocean waves. Part I: Definition, calibration, and validation. Journal of Physical Oceanography, 40(9): 1917-1941
|
Babanin A. 2011. Breaking and Dissipation of Ocean Surface Waves. Cambridge: Cambridge University Press, 480
|
Babanin A V. 2012. Swell attenuation due to wave-induced turbulence. Proceedings of the 31st International Conference on Ocean, Offshore and Artic Engineering (OMAE2012), 439-443
|
Babanin A V, Haus B K. 2009. On the existence of water turbulence induced by nonbreaking surface waves. Journal of Physical Oceanography, 39(10): 2675-2679
|
Babanin A V, Tsagareli K N, Young I R, et al. 2009. Numerical investigation of spectral evolution of wind waves. Part II: Dissipation term and evolution tests. Journal of Physical Oceanography, 40(4): 667-683
|
Bi Fan. 2013. On the wave-induced effect to circulation transport and the characteristics of swell propagation and dissipation (in Chinese)[dissertation]. Qingdao: Ocean University of China, 119
|
Bi Fan, Wu Kejian. 2014. Wave effect on the ocean circulations through mass transport and wave-induced pumping. Journal of Ocean University of China, 13(2): 175-182
|
Bi Fan, Wu Kejian, Zhang Yuming. 2012. The effect of Stokes drift on Ekman transport in the open sea. Acta Oceanologica Sinica, 31(6): 12-18
|
Bidlot J R, Abdalla S, Janssen P. 2005. A revised formulation for ocean wave dissipation in CY25R1. in Tech Rep Memorandum R60. 9/JB/0516. Research Department, ECMWF, Reading, UK
|
Chalikov D. 1995. The parameterization of the wave boundary layer.Journal of Physical Oceanography, 25(6): 1333-1349
|
Chalikov D V, Belevich M Y. 1993. One-dimensional theory of the wave boundary layer. Boundary-Layer Meteorology, 63(1-2): 65-96
|
Dodet G, Bertin X, Taborda R. 2010. Wave climate variability in the North-East Atlantic Ocean over the last six decades. Ocean Modelling, 31(3-4): 120-131
|
Fan Y, Lin S-J, Held I M, et al. 2012. Global ocean surface wave simulation using a coupled atmosphere-wave model. Journal of Climate, 25(18): 6233-6252
|
Grachev A A, Fairall C W. 2001. Upward momentum transfer in the marine boundary layer. Journal of Physical Oceanography, 31(7): 1698-1711
|
Hanley K E, Belcher S E. 2008. Wave-driven wind jets in the marine atmospheric boundary layer. Journal of the Atmospheric Sciences, 65(8): 2646-2660
|
Hanley K E, Belcher S E, Sullivan P P. 2010. A global climatology of wind-wave interaction. Journal of Physical Oceanography, 40(6): 1263-1282
|
Hanna S, Heinold D W. 1985. Development and Application of A Simple Method for Evaluating Air Quality Models. Washington DC: American Petroleum Institute
|
Hanson J L, Jensen R E. 2004. Wave system diagnostics for numerical wave models. In: Proceedings of the 8th International Workshop on Wave Hindcasting and Forecasting. Oahu, Hawaii
|
Hanson J L, Phillips O M. 2001. Automated analysis of ocean surface directional wave spectra. Journal of Atmospheric and Oceanic Technology, 18(2): 277-293
|
Hanson J L, Tracy B A, Tolman H L, et al. 2009. Pacific hindcast performance of three numerical wave models. Journal of Atmospheric and Oceanic Technology, 26(8): 1614-1633
|
Janssen P A E M. 1982. Quasilinear approximation for the spectrum of wind-generated water waves. Journal of Fluid Mechanics, 117: 493-506
|
Jenkins A D. 1986. A theory for steady and variable wind-and waveinduced currents. Journal of Physical Oceanography, 16(8): 1370-1377
|
Jenkins A D. 1987. Wind and wave induced currents in a rotating sea with depth-varying eddy viscosity. Journal of Physical Oceanography, 17(7): 938-951
|
Jiang L F, Zhang Z X, Qi Y Q. 2010. Simulations of SWAN and WAVEWATCH Ⅲ in northern south China sea. In: Proceedings of the Twentieth (2010) International Offshore and Polar Engineering Conference. Beijing, China: ISOPE, 213-220
|
Kalantzi G D, Gommenginger C, Srokosz M. 2009. Assessing the performance of the dissipation parameterizations in WAVEWATCH Ⅲ using collocated altimetry data. Journal of Physical Oceanography, 39(11): 2800-2819
|
Kenyon K E. 1969. Stokes drift for random gravity waves. Journal of Geophysical Research, 74(28): 6991-6994
|
Lee Harris D. 1966. The wave-driven wind. Journal of the Atmospheric Sciences, 23(6): 688-693
|
McWilliams J C, Restrepo J M. 1999. The wave-driven ocean circulation. Journal of Physical Oceanography, 29(10): 2523-2540
|
Mentaschi L, Besio G, Cassola F, et al. 2013. Problems in RMSE-based wave model validations. Ocean Modelling, 72: 53-58
|
Miles J W. 1957. On the generation of surface waves by shear flows. Journal of Fluid Mechanics, 3(2): 185-204
|
Ortiz-Royero J C, Mercado-Irizarry A. 2008. An intercomparison of SWAN and WAVEWATCH Ⅲ models with data from NDBCNOAA buoys at oceanic scales. Coastal Engineering Journal, 50(1): 47-73
|
Padilla-Hernández R, Perrie W, Toulany B, et al. 2004. Intercomparison of modern operational wave models. In: Proceedings of the Eigth International Workshop on Wave Hindcasting and Forecasting. North Shore, Oahu, Hawaii
|
Perignon Y, Ardhuin F, Cathelain M, et al. 2014. Swell dissipation by induced atmospheric shear stress. Journal of Geophysical Research: Oceans, 119(10): 6622-6630
|
Rascle N, Ardhuin F. 2013. A global wave parameter database for geophysical applications. Part 2: Model validation with improved source term parameterization. Ocean Modelling, 70: 174-188
|
Rascle N, Ardhuin F, Queffeulou P, et al. 2008. A global wave parameter database for geophysical applications. Part 1: Wave-current- turbulence interaction parameters for the open ocean based on traditional parameterizations. Ocean Modelling, 25(3-4): 154-171
|
Ren Qifeng, Zhang Jie, Meng Junmin, et al. 2011. Comparison and analysis of Envisat ASAR ocean wave spectra with buoy data in the northern Pacific Ocean. Chinese Journal of Oceanology and Limnology, 29(1): 10-17
|
Rogers W E, Babanin A V, Wang D W. 2012. Observation-consistent input and whitecapping dissipation in a model for wind-generated surface waves: Description and simple calculations. Journal of Atmospheric and Oceanic Technology, 29(9): 1329-1346
|
Saha S, Moorthi S, Pan Hualu, et al. 2010. The NCEP climate forecast system reanalysis. Bulletin of the American Meteorological Society, 91(8): 1015-1057
|
Song Jinbao. 2009. The effects of random surface waves on the steady Ekman current solutions. Deep-Sea Research Part I: Oceanographic Research Papers, 56(5): 659-671
|
Tamura H, Miyazawa Y, Oey L-Y. 2012. The Stokes drift and wave induced- mass flux in the North Pacific. Journal of Geophysical Research: Oceans, 117(C8): C08021
|
Tang C L, Perrie W, Jenkins A D, et al. 2007. Observation and modeling of surface currents on the Grand Banks: A study of the wave effects on surface currents. Journal of Geophysical Research, 112(C10): C10025
|
Teixeira M A C, Belcher S E. 2002. On the distortion of turbulence by a progressive surface wave. Journal of Fluid Mechanics, 458: 229-267
|
Tsagareli K N, Babanin A V, Walker D J, et al. 2009. Numerical investigation of spectral evolution of wind waves. Part I: Wind-input source function. Journal of Physical Oceanography, 40(4): 656-666
|
Webb A, Fox-Kemper B. 2011. Wave spectral moments and Stokes drift estimation. Ocean Modelling, 40(3-4): 273-288
|
Young I R, Babanin A V, Zieger S. 2013. The decay rate of ocean swell observed by altimeter. Journal of Physical Oceanography, 43(11): 2322-333
|
Zhang Peng, Chen Xiaoling, Lu Jianzhong, et al. 2011. Research on wave simulation of Bohai Sea based on the CCMP remotely sensed sea winds. Marine Science Bulletin (in Chinese), 30(3): 266-271
|
Zhang Hongsheng, Gu Junbo, Wang Hailong, et al. 2013a. Simulating wind wave field near the Pearl River Estuary with SWAN nested in WAVEWATCH. Journal of Tropical Oceanography, 32(1): 8-17
|
Zhang Yuming, Wu Kejian, Zhang Xiaoshuang, et al. 2013b. Improving the estimate of wind energy input into the Ekman layer within the Antarctic Circumpolar Current. Acta Oceanologica Sinica, 32(3): 19-27
|
Zheng Chongwei, Pan Jing, Li Jiaxun. 2013. Assessing the China Sea wind energy and wave energy resources from 1988 to 2009. Ocean Engineering, 65: 39-48
|
Zieger S, Babanin A V, Rogers E, et al. 2011. Observation-based dissipation and input terms for a WAVEWATCH Ⅲ: implementation and simple simulations. In: Proceedings of the 12th Int Workshop on Wave Hindcasting and Forecasting and 3rd Coastal Hazards Symposium. Kohala Coast, Hawaii
|
1. | Seyed Mostafa Siadatmousavi, Mehdi Yaghoobi Kalourazi, Ali Khosh Kholgh. Improving the WAVEWATCH-III wave model results using data assimilation in the Persian Gulf. Ocean Engineering, 2024, 300: 117460. doi:10.1016/j.oceaneng.2024.117460 | |
2. | Wei Chen, Jie Chen, Jian Shi. Regional differences in the effects of various Stokes drifts on the cooling of the marine environment under different wave conditions. Environmental Research, 2024, 255: 119191. doi:10.1016/j.envres.2024.119191 | |
3. | Dayanis M. Borges, Humberto L. Varona, Marcelo F. Alonso, et al. Investigating an extreme meteo-oceanographic event in the southern Brazil from in situ observations and modeling results. Regional Studies in Marine Science, 2023, 65: 103071. doi:10.1016/j.rsma.2023.103071 | |
4. | Li Zou, Liangyu Liu, Zhen Wang, et al. Evolution Wave Condition Using WAVEWATCH III for Island Sheltered Area in the South China Sea. Journal of Marine Science and Engineering, 2023, 11(6): 1158. doi:10.3390/jmse11061158 | |
5. | Ze Sun, Ye Zhou, Jun Ding, et al. Assessment of WAVEWATCH-III in Wind Wave Modeling of the Xisha Islands. Journal of Environmental Engineering, 2023, 149(3) doi:10.1061/JOEEDU.EEENG-7144 | |
6. | P. A. Umesh, K. G. Parvathy, D. R. Fernandez, et al. Global Sea State Prediction Using OSCAT Winds: A Statistical Assessment of WAM and WWIII Hindcasts with NDBC-NOAA Buoys and Satellite Altimeter Data. Pure and Applied Geophysics, 2023, 180(1): 509. doi:10.1007/s00024-022-03212-8 | |
7. | Zeqi Zhao, Jian Shi, Weizeng Shao, et al. The Influence of Typhoon-Induced Wave on the Mesoscale Eddy. Atmosphere, 2023, 14(12): 1804. doi:10.3390/atmos14121804 | |
8. | Sachini Pathirana, Ian Young, Alberto Meucci. Modelling swell propagation across the Pacific. Frontiers in Marine Science, 2023, 10 doi:10.3389/fmars.2023.1187473 | |
9. | Jingwei Gu, Xiuzhong Li, Yijun He. A speckle noise suppression method based on surface waves investigation and monitoring data. Acta Oceanologica Sinica, 2023, 42(1): 131. doi:10.1007/s13131-022-2103-4 | |
10. | Guisela Grossmann-Matheson, Ian R. Young, Jose-Henrique Alves, et al. Development and validation of a parametric tropical cyclone wave height prediction model. Ocean Engineering, 2023, 283: 115353. doi:10.1016/j.oceaneng.2023.115353 | |
11. | R. Rachmayani, N. S. Ningsih, I. Ardiansyah. The effect of reclamation on the significant wave height changes in Jakarta Bay during Hagibis and Mitag typhoons. Journal of Ocean Engineering and Marine Energy, 2023, 9(1): 165. doi:10.1007/s40722-022-00249-8 | |
12. | Ru Yao, Weizeng Shao, Mengyu Hao, et al. The Respondence of Wave on Sea Surface Temperature in the Context of Global Change. Remote Sensing, 2023, 15(7): 1948. doi:10.3390/rs15071948 | |
13. | Min Roh, Sang-Myeong Oh, Pil-Hun Chang, et al. Sensitivity Analysis of Forecasting Performance for ST6 Parameterization in High-Resolution Wave Model Based on WAVEWATCH III. Journal of Marine Science and Engineering, 2023, 11(5): 1038. doi:10.3390/jmse11051038 | |
14. | Abhijith Raj, B Praveen Kumar, P G Remya, et al. Assessment of the forecasting potential of WAVEWATCH III model under different Indian Ocean wave conditions. Journal of Earth System Science, 2023, 132(1) doi:10.1007/s12040-023-02045-w | |
15. | Hongbin Yang, Bingchen Liang, Zhuxiao Shao. Study on the influence range of tropical cyclones on ocean waves. Ocean Engineering, 2022, 266: 112864. doi:10.1016/j.oceaneng.2022.112864 | |
16. | Mehmet Burak Soran, Khalid Amarouche, Adem Akpınar. Spatial calibration of WAVEWATCH III model against satellite observations using different input and dissipation parameterizations in the Black Sea. Ocean Engineering, 2022, 257: 111627. doi:10.1016/j.oceaneng.2022.111627 | |
17. | Nuno M.R. Monteiro, Tiago C.A. Oliveira, Paulo A. Silva, et al. Wind–wave characterization and modeling in the Azores Archipelago. Ocean Engineering, 2022, 263: 112395. doi:10.1016/j.oceaneng.2022.112395 | |
18. | Weizeng Shao, Wupeng Yu, Xingwei Jiang, et al. Analysis of Wave Distributions Using the WAVEWATCH-III Model in the Arctic Ocean. Journal of Ocean University of China, 2022, 21(1): 15. doi:10.1007/s11802-022-4811-y | |
19. | Zhenjun Zheng, Xiaozhou Ma, Xuezhi Huang, et al. Wave forecasting within a port using WAVEWATCH III and artificial neural networks. Ocean Engineering, 2022, 255: 111475. doi:10.1016/j.oceaneng.2022.111475 | |
20. | Hongbin Yang, Zhuxiao Shao, Bingchen Liang, et al. Performance of different input and dissipation packages in WAVEWATCH III model during tropical cyclones. Physics of Fluids, 2022, 34(10) doi:10.1063/5.0120059 | |
21. | Weizeng Shao, Tao Jiang, Yu Zhang, et al. Cyclonic Wave Simulations Based on WAVEWATCH-III Using a Sea Surface Drag Coefficient Derived from CFOSAT SWIM Data. Atmosphere, 2021, 12(12): 1610. doi:10.3390/atmos12121610 | |
22. | Fangguo Zhai, Wenfan Wu, Yanzhen Gu, et al. Dynamics of the seasonal wave height variability in the South China Sea. International Journal of Climatology, 2021, 41(2): 934. doi:10.1002/joc.6707 | |
23. | Mehdi Yaghoobi Kalourazi, Seyed Mostafa Siadatmousavi, Abbas Yeganeh-Bakhtiary, et al. WAVEWATCH-III source terms evaluation for optimizing hurricane wave modeling: A case study of Hurricane Ivan. Oceanologia, 2021, 63(2): 194. doi:10.1016/j.oceano.2020.12.001 | |
24. | Thondithala R. Anoop, Puthuveetil R. Shanas, Valliyil M. Aboobacker, et al. On the generation and propagation of Makran swells in the Arabian Sea. International Journal of Climatology, 2020, 40(1): 585. doi:10.1002/joc.6192 | |
25. | Yuyi Hu, Weizeng Shao, Yongliang Wei, et al. Analysis of Typhoon-Induced Waves along Typhoon Tracks in the Western North Pacific Ocean, 1998–2017. Journal of Marine Science and Engineering, 2020, 8(7): 521. doi:10.3390/jmse8070521 | |
26. | Yuyi Hu, Weizeng Shao, Jian Shi, et al. Analysis of the typhoon wave distribution simulated in WAVEWATCH- III model in the context of Kuroshio and wind-induced current. Journal of Oceanology and Limnology, 2020, 38(6): 1692. doi:10.1007/s00343-019-9133-6 | |
27. | P.A. Umesh, Manasa R. Behera. Performance evaluation of input-dissipation parameterizations in WAVEWATCH III and comparison of wave hindcast with nested WAVEWATCH III-SWAN in the Indian Seas. Ocean Engineering, 2020, 202: 106959. doi:10.1016/j.oceaneng.2020.106959 | |
28. | Zhehao Yang, Weizeng Shao, Yang Ding, et al. Wave Simulation by the SWAN Model and FVCOM Considering the Sea-Water Level around the Zhoushan Islands. Journal of Marine Science and Engineering, 2020, 8(10): 783. doi:10.3390/jmse8100783 | |
29. | A. Webb, T. Waseda, K. Kiyomatsu. A high-resolution, long-term wave resource assessment of Japan with wave–current effects. Renewable Energy, 2020, 161: 1341. doi:10.1016/j.renene.2020.05.030 | |
30. | Nairui Wang, Kefeng Chen, Peidong Lu, et al. Effects of tidal variations on storm waves: A case study of the radial sand ridges along China's Jiangsu coast during Typhoon Muifa. Ocean Engineering, 2019, 190: 106444. doi:10.1016/j.oceaneng.2019.106444 | |
31. | Yingying Ding, Juncheng Zuo, Weizeng Shao, et al. Wave parameters retrieval for dual-polarization C-band synthetic aperture radar using a theoretical-based algorithm under cyclonic conditions. Acta Oceanologica Sinica, 2019, 38(5): 21. doi:10.1007/s13131-019-1438-y | |
32. | Fadia Ticona Rollano, Adam Brown, Ashley Ellenson, et al. Breaking waves in deep water: measurements and modeling of energy dissipation. Ocean Dynamics, 2019, 69(10): 1165. doi:10.1007/s10236-019-01301-2 | |
33. | Yexin Sheng, Weizeng Shao, Shuiqing Li, et al. Evaluation of Typhoon Waves Simulated by WaveWatch-III Model in Shallow Waters Around Zhoushan Islands. Journal of Ocean University of China, 2019, 18(2): 365. doi:10.1007/s11802-019-3829-2 | |
34. | Yan Xiang, Zhi-min Fu, Ying Meng, et al. Analysis of wave clipping effects of plain reservoir artificial islands based on MIKE21 SW model. Water Science and Engineering, 2019, 12(3): 179. doi:10.1016/j.wse.2019.08.002 | |
35. | Weizeng Shao, Yexin Sheng, Huan Li, et al. Analysis of Wave Distribution Simulated by WAVEWATCH-III Model in Typhoons Passing Beibu Gulf, China. Atmosphere, 2018, 9(7): 265. doi:10.3390/atmos9070265 | |
36. | Weizeng Shao, Yuyi Hu, Jingsong Yang, et al. An Empirical Algorithm to Retrieve Significant Wave Height from Sentinel-1 Synthetic Aperture Radar Imagery Collected under Cyclonic Conditions. Remote Sensing, 2018, 10(9): 1367. doi:10.3390/rs10091367 | |
37. | Yao Xu, Fan Bi, Jinbao Song, et al. The temporal and spatial variations in the Pacific wind and wave fields for the period 2002–2011. Acta Oceanologica Sinica, 2017, 36(3): 26. doi:10.1007/s13131-017-1039-6 | |
38. | Zhaoqing Yang, Vincent S. Neary, Taiping Wang, et al. A wave model test bed study for wave energy resource characterization. Renewable Energy, 2017, 114: 132. doi:10.1016/j.renene.2016.12.057 | |
39. | Hailun He, Yao Xu. Wind-wave hindcast in the Yellow Sea and the Bohai Sea from the year 1988 to 2002. Acta Oceanologica Sinica, 2016, 35(3): 46. doi:10.1007/s13131-015-0786-5 | |
40. | Yanqiang Wang, Wei Peng, Fan Xiao, et al. Analyses and Parallel Optimization Exploration of the Coupled Atmosphere-Ocean Wave Numerical Forecasting Model. 2022 8th International Conference on Big Data Computing and Communications (BigCom), doi:10.1109/BigCom57025.2022.00040 |