FENG Ying, CHEN Xianyao, WANG Qin, YUAN Yeli. Mesoscale characteristics of Antarctic Intermediate Water in the South Pacific[J]. Acta Oceanologica Sinica, 2015, 34(11): 92-101. doi: 10.1007/s13131-015-0752-2
Citation: FENG Ying, CHEN Xianyao, WANG Qin, YUAN Yeli. Mesoscale characteristics of Antarctic Intermediate Water in the South Pacific[J]. Acta Oceanologica Sinica, 2015, 34(11): 92-101. doi: 10.1007/s13131-015-0752-2

Mesoscale characteristics of Antarctic Intermediate Water in the South Pacific

doi: 10.1007/s13131-015-0752-2
  • Received Date: 2015-03-19
  • Rev Recd Date: 2015-06-02
  • The Argo float observations are used to investigate the mesoscale characteristics of the Antarctic Intermediate Water (AAIW) in the South Pacific in this paper. It is shown that a subsurface mesoscale phenomenon is probably touched by an Argo float during the float's ascent-descent cycles and is identified by the horizontal salinity gradient between the vertical temperature-salinity profiles. This shows that the transportation of the AAIW may be accompanied with the rich mesoscale characteristics. To derive the spatial length, time, and propagation characteristics of the mesoscale variability of the AAIW, the gridded temperature-salinity dataset ENACT/ENSEMBLE Version 3 constructed on the in-situ observations in the South Pacific since 2005 is used. The Empirical Mode Decomposition method is applied to decompose the isopycnal-averaged salinity anomaly from 26.8 σθ-27.4 σθ, where the AAIW mainly resides, into the basin scale and two mesoscale modes. It is found that the first mesoscale mode with the length scale on the order of 1 000 km explains nearly 50% variability of the mesoscale characteristics of the AAIW. Its westward-propagation speeds are slower in the mid-latitude (around 1 cm/s) and faster in the low latitude (around 6 cm/s), but with an increasing in the latitude band on 25°-30°S. The second mesoscale mode is of the length scale on the order of 500 km, explaining about 30% variability of the mesoscale characteristics of the AAIW. Its westward-propagation speed keeps nearly unchanged (around 0.5 cm/s). These results presented the stronger turbulent motion of the subsurface ocean on the spatial scale, and also described the significant role of Argo program for the better understanding of the deep ocean.
  • loading
  • Alory H, Wijffels S, Meyers G M. 2007. Observed temperature trends in the Indian Ocean over 1960-1999 and associated mechan-isms. Geophys Res Lett, 34: L02606
    Barron C N, Kara A B, Jacobs G A. 2009. Objective estimates of west-ward Rossby wave and eddy propagation from sea surface height analyses. J Geophys Res, 114: C03013
    Boyer T P, Antonov J I, Garcia H, et al. 2006. World Ocean Database 2005, Chapter 1: Introduction, NOAA Atlas NESDIS 60. In: Levi-tus S, eds. Washington, D C: US Government Printing Office, 182, DVD
    Casal T G D, Beal L M, Lumpkin R. 2006. A North Atlantic deep-water eddy in the Agulhas current system. Deep-Sea Res Pt I, 53: 1718-1728
    Challenor P G, Cipollini P, Cromwell D. 2001. Use of the 3D Radon transform to examine the properties of oceanic Rossby waves. J Atmos Oceanic Technol, 18(9): 1558-1566
    Chelton D B, Schlax M G. 1996. Global observations of oceanic Rossby waves. Science, 272(5259): 234-238
    Chelton D B, Schlax M G, Lyman J M, et al. 2003. Equatorially trapped Rossby waves in the presence of meridionally sheared baroclin-ic flow in the Pacific Ocean. Prog Oceanogr, 56(2): 323-380
    Chelton D B, Schlax M G, Samelson R M, et al. 2007. Global observa-tions of large oceanic eddies. Geophys Res Lett, 34: L15606
    Chiswell S M and Sutton P J H. 1998. A deep eddy in the Antarctic Intermediate Water North of the Chatham rise. J Phys Oceanogr, 28: 535-540
    Chen Xianyao, Wu Zhaohua, Huang N E. 2010. The time-dependent intrinsic correlation based on the empirical mode decomposi-tion. Advances in Adaptive Data Analysis, 2(2): 233-265
    Cipollini P, Cromwell D, Challenor P G, et al. 2001. Rossby waves de-tected in global ocean colour data. Geophys Res Lett, 28(2): 323-326
    Dengler M, Schott F A, Eden C, et al. 2004. Break- up of the Atlantic deep western boundary current into eddies at 81°S. Nature, 432: 1018-1020
    Domingues C M, Church J A, White N J, et al. 2008. Improved estim-ates of upper-ocean warming and multi-decadal sea level rise. Nature, 453(7198): 1090-1093
    Halliwell G R Jr, Mooers C N K. 1979. The space-time structure and variability of the shelf water-slope water and Gulf Stream sur-face temperature fronts and associated warm-core eddies. J Geophys Res, 84: 7707-7725
    Halliwell G R Jr, Ro Y J, Cornillon P. 1991. Westward-propagating SST anomalies and baroclinic eddies in the Sargasso Sea. J Phys Oceanogr, 21: 1664-1680
    Hill K L, Robinson I S, Cipollini P. 2000. Propagation characteristics of extratropical planetary waves observed in the ATSR global sea surface temperature record. J Geophys Res, 105(C9): 21927-21945
    Huang N E, Shen Zheng, Long S R, et al. 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 454(1971): 903-995
    Huang N E, Wu Zhaohua. 2008. A review on Hilbert-Huang trans-form: the method and its applications to geophysical studies. Rev Geophys, 46: RG2006
    Huang N E, Wu Zhaohua, Long S R, et al. 2009. On instantaneous fre-quency. Advances in Adaptive Data Analysis, 1(2): 177-229
    Isern-Fontanet J, Garcia-Ladona E, Font J. 2003. Identification of marine eddies from altimetric maps. J Atmos Oceanic Technol,20: 772-778
    Ingleby B, Huddleston M. 2007. Quality control of ocean temperature and salinity profiles historical and real-time data. Journal of Marine Systems, 65(1-4): 158-175
    Jacobs G A, Barron C N, Rhodes R C. 2001. Mesoscale characteristics. J Geophys Res, 106(C9): 19581-19595
    McWilliams J C, Owens W B, Hua B L. 1986. An objective analysis of the POLYMODE Local Dynamics Experiment, part I,General formalism and statistical model selection. J Phys Oceanogr, 380(16): 483-504
    Naveira Garabato A C, Jullion L, Stevens D P, et al. 2009. Variability of subantarctic mode water and Antarctic intermediate water in the Drake Passage during the Late-Twentieth and Early-Twenty-First centuries. J Climate, 22(13): 3661-3688
    Oka E. 2005. Long-term sensor drift found in recovered ARGO profil-ing floats. Journal of Oceanography, 61(4): 775-781
    Richardson P L, Bower A S, Zenk W. 2000. A census of meddies tracked by floats. Prog Oceanogr, 45: 209-250
    Susanto R D, Zheng Quanan, Yan Xiaohai. 1998. Complex singular value decomposition analysis of equatorial waves in the Pacific observed by TOPEX/Poseidon altimeter. J Atmos Oceanic Technol, 15(3): 764-774
    Tomczak M, Andrew C. 1997. Eddy formation in the Antarctic Inter-mediate Water of the subtropical South Pacific Ocean. J Mar At-mos Res, 1: 8-12
    Tomczak M. 2006. Variability of Antarctic intermediate water proper-ties in the South Pacific Ocean. Ocean Science Discussions, 3(6): 2021-2058
    Weatherly G, Arhan M, Mercier H, et al. 2002. Evidence of abyssal ed-dies in the Brazil Basin. J Geophys Res, 107: 3027-3041
    Wu Zhaohua, Huang N E. 2009. Ensemble empirical mode decom-position: A noise-assisted data analysis method. Advances in Adaptive Data Analysis, 1(1): 1-41
    Wu Zhaohua, Huang N E, Long S R, et al. 2007. On the trend, detrend-ing, and variability of nonlinear and nonstationary time series. Proceedings of the National Academy of Sciences of the United States of America, 104(38): 14889-14894
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1956) PDF downloads(967) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return