GAO Feng, CHEN Xinjun, GUAN Wenjiang, LI Gang. A New model to forecast fishing ground of Scomber japonicus in the Yellow Sea and East China Sea[J]. Acta Oceanologica Sinica, 2016, 35(4): 74-81. doi: 10.1007/s13131-015-0767-8
Citation: GAO Feng, CHEN Xinjun, GUAN Wenjiang, LI Gang. A New model to forecast fishing ground of Scomber japonicus in the Yellow Sea and East China Sea[J]. Acta Oceanologica Sinica, 2016, 35(4): 74-81. doi: 10.1007/s13131-015-0767-8

A New model to forecast fishing ground of Scomber japonicus in the Yellow Sea and East China Sea

doi: 10.1007/s13131-015-0767-8
  • Received Date: 2014-12-16
  • Rev Recd Date: 2016-07-14
  • The pelagic species is closely related to the marine environmental factors, and establishment of forecasting model of fishing ground with high accuracy is an important content for pelagic fishery. The chub mackerel(Scomber japonicus) in the Yellow Sea and East China Sea is an important fishing target for Chinese lighting purse seine fishery. Based on the fishery data from China's mainland large-type lighting purse seine fishery for chub mackerel during the period of 2003 to 2010 and the environmental data including sea surface temperature(SST), gradient of the sea surface temperature(GSST), sea surface height(SSH) and geostrophic velocity(GV), we attempt to establish one new forecasting model of fishing ground based on boosted regression trees. In this study, the fishing areas with fishing effort is considered as one fishing ground, and the areas with no fishing ground are randomly selected from a background field, in which the fishing areas have no records in the logbooks. The performance of the forecasting model of fishing ground is evaluated with the testing data from the actual fishing data in 2011. The results show that the forecasting model of fishing ground has a high prediction performance, and the area under receiver operating curve(AUC) attains 0.897. The predicted fishing grounds are coincided with the actual fishing locations in 2011, and the movement route is also the same as the shift of fishing vessels, which indicates that this forecasting model based on the boosted regression trees can be used to effectively forecast the fishing ground of chub mackerel in the Yellow Sea and East China Sea.
  • loading
  • Abeare S M. 2009. Comparisons of boosted regression tree, GLM and GAM performance in thestandardization of yellowfin tuna catch-rate data from the Gulf of Mexco longline fishery[disser-tation]. Baton Rouge:Louisiana State University
    Andrade H A. 2003.The relationship between the skipjack tuna(Kat-suwonuspelamis) fishery and seasonal temperature variability in the south-western Atlantic. Fisheries Oceanography, 12(1):10-18
    Barbet-Massin M, Jiguet F, Albert C H, et al. 2012. Selecting pseudo-absences for species distribution models:how, where and how many. Methods in Ecology and Evolution, 3(2):327-338
    Breiman L,Friedman J H, Olshen R, et al. 1984. Classification and Re-gression Trees. Belmont:Chapman & Hall/CRC, 1-368
    Chen Xuezhong, Fan Wei, Cui Xuesen, et al. 2013b. Fishing ground forecasting of Thunnus alalung in Indian Ocean based on ran-dom forest. Haiyang Xuebao(in Chinese), 35(1):158-164
    Chen Xinjun, Gao Feng, Guan Wenjiang, et al. 2013a. Review of fish-ery forecasting technology and its models. Journal of Fisheries of China(in Chinese), 37(8):1270-1280
    Cheng Jiahua, Lin Longshan. 2004. Study on the biological character-istics and status of common mackerel(Scomber japonicus Houttuyn) fishery in the East China Sea region. Marine Fisher-ies(in Chinese), 26(2):73-78
    Chen Feng, Lei Lin, Mao Zhihua, et al. 2011. Fishery forecasting for chub mackerel(Scomber japonicus) in summer in the East China Sea based on water quality from remote sensing. Journal of Guangdong Ocean University(in Chinese), 31(3):56-62
    Chen Xinjun, Li Gang, Feng Bo, et al. 2009a. Habitat suitability index of chub mackerel(Scomber japonicus) from July to September in the East China Sea. Journal of Oceanography, 65(1):93-102
    Chen Xinjun, Liu Bilin, Tian Siquan, et al. 2009b. Forecasting the fish-ing ground of Ommastrephes bartramii with SST-based habitat suitability modelling in Northwestern Pacific. Oceanologia et Limnologia Sinica(in Chinese), 40(6):707-713
    Compton T J, Morrison M A, Leathwick J R, et al. 2012. Ontogenetic habitat associations of a demersal fish species, Pagrus-auratus, identified using boosted regression trees. Marine Ecology Pro-gress Series, 462:219-230
    Cui Xuesen, Wu Yumei, Zhang Jing, et al. 2012. Fishing ground fore-casting of Chilean jack mackerel(Trachurus murphyi) in the Southeast Pacific Ocean based on CART decision tree. Period-ical of Ocean University of China(in Chinese), 42(7-8):53-59
    Elith J, Leathwick J R, Hastie T. 2008. A working guide to boosted re-gression trees. Journal of Animal Ecology, 77(4):802-813
    Franklin J. 2009. Mapping Species Distributions:Spatial Inference and Prediction. Cabridge:Cambridge University Press, 200-205
    Freeman E A, Moisen G. 2008. PresenceAbsence:an R package for presence absence analysis. Journal of Statistical Software, 23(11):1-31
    Friedman J H. 2001. Greedy function approximation:a gradient boosting machine. The Annals of Statistics, 29(5):1189-1232
    Friedman J H. 2002. Stochastic gradient boosting. Computational Statistics and Data Analysis, 38(4):367-378
    FroeschkeB F, Tissot P, Stunz G W, et al. 2013. Spatio-temporal pre-dictive models for juvenile Southern flounder in Texas estuar-ies. North American Journal of Fisheries Management, 33(4):817-828
    Guan Wenjiang, Chen Xinjun, Gao Feng, et al. 2009. Environmental effects on fishing efficiency of Scomber japonicus for Chinese large lighting purse seine fishery in the Yellow and East China Seas. Journal of Fishery Sciences of China(in Chinese), 16(6):949-958
    Guan Wenjiang, Chen Xinjun, Li Gang. 2011. Influence of sea surface temperature and La Ni.a event on temporal and spatial fluctu-ation of chub mackerel(Scomber japonicus) stock in the East China Sea. Journal of Shanghai Ocean University(in Chinese), 20(1):102-107
    Hastie T, Tibshirani R, Friedman J. 2001. The Elements of Statistical Learning:Data Mining, Inference and Prediction. New York:Springer-Verlag, 299-345
    Lewin W C, Mehner T, Ritterbusch D, et al. 2014. The influence of an-thropogenic shoreline changes on the littoral abundance of fish species in German lowland lakes varying in depth as determ-ined by boosted regression trees. Hydrobiologia, 724(1):293-306
    Li Gang, Chen Xinjun. 2007. Tempo-spatial characteristic analysis of the mackerel resource and its fishing ground in the East China Sea. Periodical of Ocean University of China(in Chinese), 37(6):921-925
    Li Gang, Chen Xinjun. 2009. Study on the relationship between catch of mackerel and environmental factors in the East China Sea in summer. Journal of Marine Sciences(in Chinese), 27(1):1-8
    Li Gang, Chen Xinjun, Lei Lin, et al. 2014a. Distribution of hotspots of chub mackerel based on remote-sensing data in coastal waters of China. International Journal of Remote Sensing, 35(11-12):4399-4421
    Li Yuesong, Pan Lingzhi, Yan Liping, et al. 2014b. Individual-based model study on the fishing ground of chub mackerel(Scomber japonicus) in the East China Sea. Haiyang Xuebao(in Chinese), 36(6):67-74
    Miao Zhenqing. 2003. The statistical research on the formation mechanism of central fishing ground of Pneumatophorus ja-ponicus and Decapterus maruadsi in the north of East China Sea. Journal of Fisheries of China(in Chinese), 27(2):143-150
    Pearce J L, Boyce M S. 2006. Modelling distribution and abundance with presence-only data. Journal of Applied Ecology, 43(3):405-412
    Phillips S J, Anderson R P, Schapire R E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Mod-elling, 90(3-4):231-259
    Ridgeway G. 2007. Generalized boosted models:a guide to the gbm package. http://ftp.ctex.org/mirrors/cran/web/packages/gbm/[2007-08-03/2014-09-30]
    Soykan C U, Eguchi T, Kohin S, et al. 2014. Prediction of fishing effort distributions using boosted regression trees. Ecological Applic-ations, 24(1):71-83
    Swets J A. 1988. Measuring the accuracy of diagnostic systems. Sci-ence, 240(4857):1285-1293
    Van Der Wal J, Shoo L P, Graham C, et al. 2009. Selecting pseudo-ab-sence data for presence-only distribution modeling:how far should you stray from what you know. Ecological Modelling, 220(4):589-594
    Zhang Yuexia, Qiu Zhongfeng, Wu Yumei, et al. 2009. Predicting central fishing ground of Scomber japonica in East China Sea based on case-based reasoning. Marine Sciences(in Chinese), 33(6):8-11
    Zheng Bo, Chen Xinjun, Li Gang. 2008. Relationship between the re-source and fishing ground of mackerel and environmental factors based on GAM and GLM models in the East China Sea and Yellow Sea. Journal of Fisheries of China(in Chinese), 32(3):379-386
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1061) PDF downloads(896) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return