REN Lin, YANG Jingsong, ZHENG Gang, WANG Juan. Significant wave height estimation using azimuth cutoff of C-band RADARSAT-2 single-polarization SAR images[J]. Acta Oceanologica Sinica, 2015, 34(12): 93-101. doi: 10.1007/s13131-015-0769-6
Citation: REN Lin, YANG Jingsong, ZHENG Gang, WANG Juan. Significant wave height estimation using azimuth cutoff of C-band RADARSAT-2 single-polarization SAR images[J]. Acta Oceanologica Sinica, 2015, 34(12): 93-101. doi: 10.1007/s13131-015-0769-6

Significant wave height estimation using azimuth cutoff of C-band RADARSAT-2 single-polarization SAR images

doi: 10.1007/s13131-015-0769-6
  • Received Date: 2014-11-12
  • Rev Recd Date: 2015-06-05
  • This paper proposes two simple models, look-up table (LUT) model and empirical model, to directly retrieve significant wave height (Hs) using synthetic aperture radar (SAR) azimuth cutoff (λc). Both models aim at C-band VV, HH, VH, and HV single-polarization SAR images. The LUT model relates Hs to λc, while the empirical model relates Hs to both λc and SAR range-to-velocity (β). The LUT model coefficients are derived by simulation under different sea states and observation conditions, which depend on incidence angle (θ), wave direction (dw), and β but are independent of polarization. The empirical model coefficients are obtained by fitting the collocated data, which only depend on polarization. To fit empirical model coefficients and validate the two models, C-band RADARSAT-2 fine quad-polarization (VV+HH+VH+HV) single-look complex (SLC) SAR images and collocated buoy data are collected. Retrieved Hs, using Yang model and the two models proposed in this paper from four kinds of polarization SAR data, are compared with buoy Hs. Results show that both LUT and empirical models have the capacity of retrieving Hs from C-band RADARSAT-2 co-polarization SAR data, while Yang model is not suitable for these kinds of SAR data. Moreover, the empirical model is also valid for cross-polarization SAR data showing clear ocean wave stripes.
  • Bao Mingquan, Alpers W. 1998. On the cross spectrum between individual-look synthetic aperture radar images of ocean waves.IEEE Transactions on Geoscience and Remote Sensing, 36(3):922-932
    Brüning C, Alpers W, Hasselmann K. 1990. Monte-Carlo simulation studies of the nonlinear imaging of a two dimensional surface wave field by a Synthetic Aperture Radar. International Journal of Remote Sensing, 11(10):1695-1727
    Durden S L, Vesecky J F. 1985. A physical radar cross-section model for a wind-driven sea with swell. IEEE Journal of Oceanic Engineering, 10(4):445-451
    Engen G, Johnsen H. 1995. SAR-ocean wave inversion using image cross spectra. IEEE Transactions on Geoscience and Remote Sensing, 33(4):1047-1056
    European Space Agency. 2007. ENVISAT ASAR Product Handbook 2. 2. https://earth.esa.int/handbooks/asar/toc.html Hasselmann S, Brüning C, Hasselmann K, et al. 1996. An improved algorithm for the retrieval of ocean wave spectra from synthetic aperture radar image spectra. Journal of Geophysical Research, 101(C7):16615-16629
    Hasselmann K, Hasselmann S. 1991. On the nonlinear mapping of an ocean wave spectrum into a synthetic aperture radar image spectrum and its inversion. Journal of Geophysical Research, 96(C6):10713-10729
    Jackson F C. 1987. The physical basis for estimating wave-energy spectra with the radar ocean-wave spectrometer. Johns Hopkins APL Technical Digest, 8:70-73
    Kerbaol V, Chapron B, Vachon P W. 1998. Analysis of ERS-1/2 Synthetic Aperture Radar wave mode imagettes. Journal of Geophysical Research, 103(C4):7833-7846
    Lyzenga D R. 1986. Numerical simulation of synthetic aperture radar image spectra for ocean waves. IEEE Transactions on Geoscience and Remote Sensing, GE-24(6):863-872
    Lyzenga D R. 2002. Unconstrained inversion of waveheight spectra from SAR images. IEEE Transactions on Geoscience and Remote Sensing, 40(2):261-270
    Mastenbroek C, de Valk C. 2000. A semiparametric algorithm to retrieve ocean wave spectra from synthetic aperture radar. Journal of Geophysical Research, 105(C2):3497-3516
    Montuori A, de Ruggiero P, Migliaccio M, et al. 2013. X-band COSMO-SkyMed wind field retrieval, with application to coastal circulation modeling. Ocean Science, 9:121-132
    Pierson W J, Moskowitz L. 1964. A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii.Journal of Geophysical Research, 69(24):5181-5190
    Ren Lin, Yang Jingsong, Wang Juan, et al. 2013. Directional ocean wave spectra extracted from the dual-polarization SAR imagery.In:Bostater C R, Mertikas S P, Neyt X, et al., eds. Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions. Dresden, Germany:SPIE, 88880O
    Schuler D L, Lee J S, Kasilingam D, et al. 2004. Measurement of ocean surface slopes and wave spectra using polarimetric SAR image data. Remote Sensing of Environment, 91(2):198-211
    Schulz-Stellenfleth J, König T, Lehner S. 2006. An empirical approach for the retrieval of ocean wave parameters from synthetic aperture radar data. In:IEEE International Conference on Geoscience and Remote Sensing Symposium. Denver, USA:IEEE, 1875-1878
    Schulz-Stellenfleth J, König T, Lehner S. 2007. An empirical approach for the retrieval of integral ocean wave parameters from synthetic aperture radar data. Journal of Geophysical Research, 112(C3):C03019
    Schulz-Stellenfleth J, Lehner S, Hoja D. 2005. A parametric scheme for the retrieval of two-dimensional ocean wave spectra from synthetic aperture radar look cross spectra. Journal of Geophysical Research, 110(C5):C05004
    Vachon P W, Raney R K. 1991. Resolution of the ocean wave propagation direction in SAR imagery. IEEE Transactions on Geoscience and Remote Sensing, 29(1):105-112
    Wen Shengchang, Guo Peifang, Zhang Dacuo, et al. 1993. Analytically derived wind-wave directional spectrum. Part 2. Characteristics, comparison and verification of spectrum. Journal of Oceanography, 49(2):149-172
    Yang Jingsong, Wang He, Chen Xiaoyan, et al. 2008. A new method for significant wave height retrieval from SAR imagery. In:Valinia A, Hildebrand P H, Uratsuka S, eds. Microwave Remote Sensing of the Atmosphere and Environment VI. Noumea, New Caledonia:SPIE, 71540C
    Zhang Biao, Perrie W, He Yijun. 2010. Validation of RADARSAT-2 fully polarimetric SAR measurements of ocean surface waves.Journal of Geophysical Research, 115(C6):C06031
  • Relative Articles

  • Cited by

    Periodical cited type(27)

    1. Daozhong Sun, Yunhua Wang, Yanmin Zhang, et al. Wind Wave and Wind Speed Inversion Based on Azimuth Cutoff of Airborne IRA Images. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1. doi:10.1109/TGRS.2024.3351765
    2. Yong Wan, Kun Cui, Ruozhao Qu, et al. Wave Azimuth Cutoff Compensation Method and the Multisatellite Networking Mode of SAR. Journal of Ocean University of China, 2023, 22(3): 683. doi:10.1007/s11802-023-5340-z
    3. Haiyang Sun, Xupu Geng, Lingsheng Meng, et al. First Ocean Wave Retrieval from HISEA-1 SAR Imagery through an Improved Semi-Automatic Empirical Model. Remote Sensing, 2023, 15(14): 3486. doi:10.3390/rs15143486
    4. Sihan Xue, Lingsheng Meng, Xupu Geng, et al. Retrieving Ocean Surface Winds and Waves from Augmented Dual-Polarization Sentinel-1 SAR Data Using Deep Convolutional Residual Networks. Atmosphere, 2023, 14(8): 1272. doi:10.3390/atmos14081272
    5. Qiushuang Yan, Chenqing Fan, Tianran Song, et al. Polarization-Enhancement Effects for the Retrieval of Significant Wave Heights from Gaofen-3 SAR Wave Mode Data. Remote Sensing, 2023, 15(23): 5450. doi:10.3390/rs15235450
    6. Chenqing Fan, Tianran Song, Qiushuang Yan, et al. Evaluation of Multi-Incidence Angle Polarimetric Gaofen-3 SAR Wave Mode Data for Significant Wave Height Retrieval. Remote Sensing, 2022, 14(21): 5480. doi:10.3390/rs14215480
    7. Liwei Bao, Xi Zhang, Chenghui Cao, et al. Impact of Polarization Basis on Wind and Wave Parameters Estimation Using the Azimuth Cutoff From GF-3 SAR Imagery. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1. doi:10.1109/TGRS.2022.3204409
    8. Ghada Atteia, Michael J. Collins, Abeer D. Algarni, et al. Deep-Learning-Based Feature Extraction Approach for Significant Wave Height Prediction in SAR Mode Altimeter Data. Remote Sensing, 2022, 14(21): 5569. doi:10.3390/rs14215569
    9. Yawei Zhao, Jinsong Chong, Zongze Li, et al. Estimating Significant Wave Height from SAR with Long Integration Times. Applied Sciences, 2022, 12(5): 2341. doi:10.3390/app12052341
    10. Daozhong Sun, Yunhua Wang, Zhichao Xu, et al. Ocean Wave Inversion Based on Hybrid Along- and Cross-Track Interferometry. Remote Sensing, 2022, 14(12): 2793. doi:10.3390/rs14122793
    11. Tianran Song, Qiushuang Yan, Chenqing Fan, et al. Significant Wave Height Retrieval Using XGBoost from Polarimetric Gaofen-3 SAR and Feature Importance Analysis. Remote Sensing, 2022, 15(1): 149. doi:10.3390/rs15010149
    12. Sajjad Roshandel, Weiquan Liu, Cheng Wang, et al. 3D Ocean Water Wave Surface Analysis on Airborne LiDAR Bathymetric Point Clouds. Remote Sensing, 2021, 13(19): 3918. doi:10.3390/rs13193918
    13. Felipe M. Santos, Andre L.C. Santos, Nelson Violante-Carvalho, et al. A simulator of Synthetic Aperture Radar (SAR) image spectra: the applications on oceanswell waves. International Journal of Remote Sensing, 2021, 42(8): 2981. doi:10.1080/01431161.2020.1847352
    14. Yong Wan, Xiaoyu Zhang, Yongshou Dai, et al. An azimuth cut-off wavelength compensation method based on multiview synthetic aperture radar synchronization data. Remote Sensing Letters, 2020, 11(3): 245. doi:10.1080/2150704X.2019.1706008
    15. Michael J. Collins, Meng Ma, Mohammed Dabboor. On the Effect of Polarization and Incidence Angle on the Estimation of Significant Wave Height From SAR Data. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7): 4529. doi:10.1109/TGRS.2019.2891426
    16. Yong Wan, Xiaoyu Zhang, Yongshou Dai, et al. Research on a Method for Simulating Multiview Ocean Wave Synchronization Data by Networked SAR Satellites. Journal of Marine Science and Engineering, 2019, 7(6): 180. doi:10.3390/jmse7060180
    17. Huimin Li, Alexis Mouche, He Wang, et al. Polarization Dependence of Azimuth Cutoff From Quad-Pol SAR Images. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12): 9878. doi:10.1109/TGRS.2019.2929835
    18. Valeria Corcione, Giuseppe Grieco, Marcos Portabella, et al. A Novel Azimuth Cutoff Implementation to Retrieve Sea Surface Wind Speed From SAR Imagery. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(6): 3331. doi:10.1109/TGRS.2018.2883364
    19. Jian Sun, Xin Wang, Xinzhe Yuan, et al. The Dependence of Sea SAR Image Distribution Parameters on Surface Wave Characteristics. Remote Sensing, 2018, 10(11): 1843. doi:10.3390/rs10111843
    20. Weizeng Shao, Yuyi Hu, Jingsong Yang, et al. An Empirical Algorithm to Retrieve Significant Wave Height from Sentinel-1 Synthetic Aperture Radar Imagery Collected under Cyclonic Conditions. Remote Sensing, 2018, 10(9): 1367. doi:10.3390/rs10091367
    21. Yexin Sheng, Weizeng Shao, Shuai Zhu, et al. Validation of significant wave height retrieval from co-polarization Chinese Gaofen-3 SAR imagery using an improved algorithm. Acta Oceanologica Sinica, 2018, 37(6): 1. doi:10.1007/s13131-018-1217-1
    22. T. Yoshida. Azimuthal Ocean Wave Emerged in SAR Image Spectra Under Specific Condition. Journal of Geophysical Research: Oceans, 2017, 122(12): 9625. doi:10.1002/2017JC013096
    23. Shanshan Mu, Haiyan Li. The Comparision of Ocean Wave Orbital Velocity Obtained from Four Azimuth Cutoff Methods. 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), doi:10.1109/APSAR46974.2019.9048431
    24. Tianran Song, Chenqing Fan, Qiushuang Yan, et al. Dependence of the Azimuth Cutoff from Quad-Polarization Gaofen-3 SAR Image on Significant Wave Height and Wind Speed. IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, doi:10.1109/IGARSS46834.2022.9883149
    25. Weizeng Shao, Xiaofeng Li, Zhanfeng Sun, et al. Development and Validation of Empirical Wave Retrieval Algorithms for Sentinel-1 Synthetic Aperture Radar in HH-Polarization. IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, doi:10.1109/IGARSS.2018.8518658
    26. Jing Wang, He Wang, Weizeng Shao, et al. Significant Wave Height Retrieval from Gaofen-3 Wave Mode Images. IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, doi:10.1109/IGARSS.2018.8518057
    27. Yawei Zhao, Jinsong Chong, Xuan Jin. Ocean Wave Parameters Retrieval from Polarimetric SAR Images. 2023 Photonics & Electromagnetics Research Symposium (PIERS), doi:10.1109/PIERS59004.2023.10221543

    Other cited types(0)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1768) PDF downloads(719) Cited by(27)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return