LÜ Haibin, XIE Jieshuo, YAO Yuan, XU Jiexin, CHEN Zhiwu, HE Yinghui, CAI Shuqun. Effect of background parabolic current on characteristics and energetics of internal solitary waves by numerical simulation[J]. Acta Oceanologica Sinica, 2016, 35(1): 1-10. doi: 10.1007/s13131-016-0790-4
Citation: LÜ Haibin, XIE Jieshuo, YAO Yuan, XU Jiexin, CHEN Zhiwu, HE Yinghui, CAI Shuqun. Effect of background parabolic current on characteristics and energetics of internal solitary waves by numerical simulation[J]. Acta Oceanologica Sinica, 2016, 35(1): 1-10. doi: 10.1007/s13131-016-0790-4

Effect of background parabolic current on characteristics and energetics of internal solitary waves by numerical simulation

doi: 10.1007/s13131-016-0790-4
  • Received Date: 2015-04-30
  • Rev Recd Date: 2015-07-29
  • Based on modifications of the observed background parabolic current in upper layer of the northeastern South China Sea (SCS), the effects of eight kinds of background currents on the characteristics and energy conversion of internal solitary waves (ISWs) are investigated by an Internal Gravity Wave (IGW) model. It is found that, although the background current has little effect on the number of the generated ISWs, it reduces the resulted phase speed of ISW. When the background parabolic current appears with its lower boundary near or above the main thermocline, the ISW amplitude and the depth of the isopycnal undergoing maximum displacement increase; when the background parabolic current curvature is reduced, the ISW amplitude and the ratio of baroclinic to barotropic energy reduce, whilst the phase speed of ISW, the baroclinic energy, and the ratio of baroclinic kinetic energy (KE) to available potential energy (APE) increase; when the lower boundary of background parabolic current extends down to the seabed and the background current curvature is reduced, the ISW amplitude and phase speed decrease, whilst the barotropic kinetic energy, the baroclinic energy and the ratio of KE to APE increase. At a whole depth, when the lower background current curvature is reduced and the upper current curvature is increased, the ISW amplitude, and phase speed, the ratio of baroclinic to barotropic energy, the baroclinic energy, and the ratio of KE to APE all increase.
  • loading
  • Apel J R, Ostrovsky L A, Stepanyants Y A, et al. 2006. Internal solitons in the ocean. Technical Report 2006, WHOI-2006-04
    Cai Shuqun, Long Xiaomin, Dong Danpeng, et al. 2008. Background current affects the internal wave structure of the northern South China Sea. Progress in Natural Science, 18(5): 585-589
    Chen Zhiwu, Xie Jieshuo, Xu Jiexin, et al. 2013. Energetics of nonlinear internal waves generated by tidal flow over topography. Ocean Modelling, 68: 1-8
    Choi W, Camassa R. 1999. Fully nonlinear internal waves in a two-fluid system. J Fluid Mech, 396: 1-36
    Dushaw B D, Cornuelle B D, Worcester P F, et al. 1995. Barotropic and baroclinic tides in the central North Pacific Ocean determined from long-range reciprocal acoustic transmissions. J Phys
    Oceanogr, 25(4): 631-647
    Holloway P E, Merrifield M A. 1999. Internal tide generation by seamounts, ridges, and islands. J Geophys Res, 104(C11):25937-25951
    Kang D, Fringer O. 2012. Energetics of barotropic and baroclinic tides in the monterey bay area. J Phys Oceanogr, 42(2): 272-290
    Lamb K G. 2008. On the calculation of the available potential energy of an isolated perturbation in a density-stratified fluid. J Fluid Mech, 597: 415-427
    Lamb K G. 2010. Energetics of internal solitary waves in a background sheared current. Nonlin Processes Geophys, 17(5): 553-568
    Liao Guanghong, Yang Chenghao, Xu Xiaohua, et al. 2012. Effects of mesoscale eddies on the internal solitary wave propagation. Acta Oceanologica Sinica, 31(5): 26-40
    Lin Zhenhua, Song Jinbao. 2012. Numerical studies of internal solitary wave generation and evolution by gravity collapse. Journal of Hydrodynamics, Ser B, 24(4): 541-553
    Osborne A R, Burch T L. 1980. Internal solitons in the Andaman Sea. Science, 208(4443): 451-460
    Scotti A, Beardsley R, Butman B. 2006. On the interpretation of energy
    and energy fluxes of nonlinear internal waves: an example from Massachusetts Bay. J Fluid Mech, 561: 103-112
    Turkington B, Eydeland A, Wang S. 1991. A computational method for solitary internal waves in a continuously stratified fluid. Stud Appl Math, 85: 93-127
    Vlasenko V, Stashchuk N, Hutter K. 2005. Baroclinic Tides: Theoretical Modeling and Observational Evidence. Cambridge, UK: Cambridge University Press, 351
    Vlasenko V, Alpers W. 2005. Generation of secondary internal waves by the interaction of an internal solitary wave with an underwater bank. J Geophys Res, 110: C02019
    Warn-Varnas A, Hawkins J, Lamb K G, et al. 2010. Solitary wave generation dynamics at Luzon strait. Ocean Modelling, 31(1-2): 9-27
    Wunsch C. 1975. Internal tides in the ocean. Rev Geophys, 13(1): 167-182
    Xie Jieshuo, Chen Zhiwu, Xu Jiexin, et al. 2014. Effect of vertical stratification on characteristics and energy of nonlinear internal solitary waves from a numerical model. Commun Nonlinear Sci Numer Simulat, 19(10): 3539-3555
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1419) PDF downloads(1365) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return