Citation: | ZHANG Dajuan, GUO Donghui, WANG Guizhong, LI Shaojing. Response of antioxidant defense system in copepod Calanus sinicus Brodsky exposed to CO2-acidified seawater[J]. Acta Oceanologica Sinica, 2016, 35(8): 82-88. doi: 10.1007/s13131-016-0870-5 |
Bradford M M. 1976. A rapid and sensitive method for the quantita-tion of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2):248-254
|
Byrne M, Soars N, Selvakumaraswamy P, et al. 2010. Sea urchin fertil-ization in a warm, acidified and high pCO2 ocean across a range of sperm densities. Marine Environmental Research, 69(4):234-239
|
Caldeira K, Wickett M E. 2005. Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. Journal of Geophysical Research:Oceans, 110(C9):C09S04
|
Caulfield J A, Adams E E, Auerbach D I, et al. 1997. Impacts of ocean CO2 disposal on marine life:Ⅱ. probabilistic plume exposure model used with a time-varying dose-response analysis. Envir-onmental Modeling & Assessment, 2(4):345-353
|
Christen R, Schackmann R W, Shapiro B M. 1983. Metabolism of sea urchin sperm. interrelationships between intracellular pH, AT-Pase activity, and mitochondrial respiration. Journal of Biolo-gical Chemistry, 258(9):5392-5399
|
Delille B, Harlay J, Zondervan I, et al. 2005. Response of primary pro-duction and calcification to changes of pCO2 during experi-mental blooms of the coccolithophorid Emiliania huxleyi. Global Biogeochemistry Cycles, 19(2):GB2023
|
Doney S C, Fabry V J, Feely R A, et al. 2009. Ocean acidification:the other CO2 problem. Annual Review of Marine Science, 1(1):169-192
|
Ellman G L, Courtney K D, Andres V Jr, et al. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2):88-95, doi: 10.1016/0006-2952(61)90145-9
|
Engel A, Zondervan I, Aerts K, et al. 2005. Testing the direct effect of CO2 concentration on a bloom of the coccolithophorid Emiliania huxleyi in mesocosm experiments. Limnology and Oceanography, 50(2):493-507
|
Forget J, Beliaeff B, Bocquené G. 2003. Acetylcholinesterase activity in copepods (Tigriopus brevicornis) from the Vilaine River estuary, France, as a biomarker of neurotoxic contaminants. Aquatic Toxicology, 62(3):195-204
|
Frova C. 2006. Glutathione transferases in the genomics era:new in-sights and perspectives. Biomolecular Engineering, 23(4):149-169
|
Galgani F, Bocquene G. 1990. In vitro inhibition of acetylcholin-esterase from four marine species by organophosphates and carbamates. Bulletin of Environmental Contamination and Toxicology, 45(2):243-249
|
Habig W H, Pabst M J, Jakoby W B. 1974. Glutathione S-transferases:the first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249(22):7130-7139
|
Hayes J D, Flanagan J U, Jowsey I R. 2005. Glutathione transferases. Annual Review of Pharmacology and Toxicology, 45:51-88
|
Huesemann M H, Skillman A D, Crecelius E A. 2002. The inhibition of marine nitrification by ocean disposal of carbon dioxide. Mar-ine Pollution Bulletin, 44(2):142-148
|
Kurihara H, Ishimatsu A. 2008. Effects of high CO2 seawater on the copepod (Acartia tsuensis) through all life stages and sub-sequent generations. Marine Pollution Bulletin, 56(6):1086-1090
|
Kurihara H, Shimode S, Shirayama Y. 2004a. Effects of raised CO2 concentration on the egg production rate and early develop-ment of two marine copepods (Acartia steueri and Acartia erythraea). Marine Pollution Bulletin, 49(9-10):721-727
|
Kurihara H, Shimode S, Shirayama Y. 2004b. Sub-lethal effects of el-evated concentration of CO2 on planktonic copepods and sea urchins. Journal of Oceanography, 60(4):743-750
|
Lee Y M, Park T J, Jung S O, et al. 2006. Cloning and characterization of glutathione S-transferase gene in the intertidal copepod Tigriopus japonicus and its expression after exposure to endo-crine-disrupting chemicals. Marine Environmental Research, 62(S1):S219-S223
|
Markovi. D M,.iki. R V,.tajn A, et al. 2002. Some blood parameters and antioxidant defense enzyme activities in the liver of carps (Cyprinus carpio L.) under acute hypoxic conditions. Kraguje-vac Journal of Science, 24:111-120
|
Mayor D J, Matthews C, Cook K, et al. 2007. CO2-induced acidifica-tion affects hatching success in Calanus finmarchicus. Marine Ecology Progress Series, 350:91-97
|
Orr J C, Fabry V J, Aumont O, et al. 2005. Anthropogenic ocean acidi-fication over the twenty-first century and its impact on calcify-ing organisms. Nature, 437(7059):681-686
|
Pan C H, Chien Y H, Wang Yijuan. 2010. The antioxidant capacity re-sponse to hypoxia stress during transportation of characins (Hべ?扨牥?即瑯畢浲灹灣????坡牬敬湩?????敂汯穵湬敥牮????攠瑦?慤氠???ぴ?ㄠ扳???佬?獭略扮????獷畩扴??楣湡摲畯捴敥摮?獩敤慳眮愠瑁敱牵?慣捵楬摴極晲楥挠慒瑥楳潥湡?楣浨瀬愠挴琱猨?猩攺愹?申爭挹核椱渼?汲愾牐瘮慲汴?摥敲瘠效氠潏瀮洠攲渰琰???故汣敯癳慹瑳整摥?洠敥瑦慦扥潣汴楳挠?牦愠瑯散獥?摮攠捡牣敩慤獩敦?獣捡潴灩敯?映潩牮?杴物潭睥瑳栠?慦渠摯?楥湡摮甠捷敡?摭敩癮敧氺潡瀠?浨敹湳瑩慯汬?摧敩汳慴礧???潩浥灷愮爠慍瑡楲癩敮??楅潣捯桬敯浧楹猠瑐牲祯?慲湥摳?倠桓祥獲楩潥汳漬朠礳?倳愺爲琰″???漷氼敢捲甾汐慵爠????湩瑮敧本爠慓瑵楮瘠敓?偮桧礬猠楙潡汮潧朠祂??ㄠ?ぴ????????????扨牥?呣慯湭湢敩牮???????畣牴湳攠瑯瑦???????畡牴湵敲瑥琠???????つ????呰桬敹?敯普映敃捡瑬獡?潵晳?桳祩灮潩硣極慳?慩湮搠?灨??潳湯?灴桨攭湥潲汮漠硙楥摬慬獯敷?慓捥瑡椠癩楮琠祳?業湭?瑲栮攠??瑵汲慮湡瑬椠捯?戠汐畬敡?捫牴慯扮???慳汥污?楣湨攬挠琲收猨?猩愺瀱椰搴甹猭?‰?漷洼灢慲爾慐瑵楬癬敭??椠潍挠桅攬洠楐獥瑮牥祦?慫湹搠?倠桓礬猠楄潡汴潴条礠?倬愠牥瑴?扡牬????漶氰攮挠畐污慲牴????湲瑥敳杯牬慵瑴楩癯敮?偯桦礠獴楨潥氠潥杮祺?????????????????扸物?呡潴摩杶桥愠浰???????潹晬浡慴湩湯???????ひど???呡爭慴湩獯据爠楡灮瑤漠浰楲捯?牥敲獴灩潥湳猠敯?漠晳?獬敵慢?略爠捤桩楮湩?汲慯牰癨慥敮?卬琭牳潴湩杭祵汬潡捴敥湤琠牡潤瑥畮猭?灳畩牮灥甠牴慲瑩異獨?瑳潰??佴?獳略戮????獲畮扡??摯牦椠療敩湯?獯敧慩?睡慬琠敃牨?慭捩楳摴楲晹椬挠愲琳椵漺渳?′?漭申爳渲愹氼?潲显??硢灥敲牴楳洠敄測琠慈汯??楲潤氠潗朠祒??????????㈠?????????戰爸?圠慉汮汴???????慬渠?呡?奩???摬浩畴湹搠獯?倠?????ば????佨捥敬慬渠?慥捩楧摨楴晳椠捩慮琠楴潨湥?桨慩獧?渭潃?攼晳?晢放挲琼?潳湵?琾栠敳牯浵慴汨?扲汮攠慯捣桥楡湮朮?楂湩?瑧桥敯?捣潩牥慮汣?即攠牄楩慳瑣潵灳潳物慯?捳愬氠椵攨渶搩爺甴洴?″?漴爴愸氰?剢敲放晓獡?????????ㄠ????べ?扒爠?圬愠湇杲??楥湲朠桎甬愠??圠慡湬朮??田椰稴栮漠湔杨???っづ????椠潳捩桮敫洠楦捯慲氠?牮攭獴灨潲湯獰敯?潥普?瑣栠敃?挼潳灵敢瀾漲搼?味極杢爾椮漠灓畣獩?橮慣灥漬渠椳挰电猨‵?漸爲椩?攳砶瀷攭爳椷洱攼湢瑲愾汓污祭?敡硩灯漠獆攠摇?琠潄?挠慌摩浭楡甠浂???物据桫椠癃攬猠?潯晳??湡癮楴牯潳渠浌攠湒琠慂氬??潴渠瑡慬洮椠渲愰琱椰漮渠?慨湥搠?呯潭硢?楮捥潤氠潥杦祦?????????ば???ㄠ??扤爠?坯慷渠杰??楯湮朠桡畮慴??坸慩湤条??甠楤穥桦潥湮杳??㈠ち?つ??佩硯楣摨慥瑭楩癣敡?搠慰浡慲条敭?整晥晲敳挠瑩獮?楮湥?瑴桲敯?捩潣灡敬瀠潦摩?周椠杰牡楣潵瀬甠獐?橡慲灡潣渭楴捵畳猠??潳牯楰?整硡灭敩牣極浳攠渨瑈慯汬汭祢?敲硧瀬漠猱攸搸?琩漮?湅楣捯歴敯汸???捬潯瑧潹砬椠挱漹氨漵朩示?????祝??????????扬爠?堠楁愬?套楡浬楳湨朠??婊栮甠′?椰愱渮稠桐敯湴?????????数慡獣畴牳攠浯敦渠瑃?洼敳瑵桢漾搲?漯晳?杢氾甠瑩慮?瑥档楴潩湯敮?灯敮爠潤硥楥摰愭獳敥?愠换瑩楯癴楡琮礠?楣湩?扮汣潥漬搠′愹渴搨‵琵椴猱猩町攳???漳甲爰渼慢汲 ̄潓晨??礠?本椠敌湩敵?剈敯獮敧慢物据栮??椰渱‰?栠楏湸敹獧敥???????????????扡牴?婳栠慯湦朠??慣橡畬愠湰???楥?即栠慰潲橯楤湵杣??圠慢湹朠??畲楥穥栠潣湯条??敡瑬?慣汯???は?ㄠ???浣灩慥捳琠獦?潤映??佴?猠畡戠????獯畭戠??摡牬楡癳敳湩?獳敩慲睡愠瑰敳牥?慤捯楮摡楮晡椮挠慍瑡楲潩湮?漠湐?獬畬牵癴楩癯慮氠??敬杬来?灩牮漬搠甶挰琨椷漩渺?爰愰琵攭?愰渰搹?桢慲琾捓桰楩湴杺?獄甠捒挠敏獢獥?潬晥?映潌甠牗?洠愱爹椸渹攮?捁潮瀠敡灳潳摡獹???捲琠慳?佰捥敲慯湸潩汤潥朠楤捩慳?卵楴湡楳捥愠???ど??????????扡牭?婡桬慩湡杮??慩橳畳慵湥???業?卧桥慮潡橴楥湳朮??坮慡湬杹??畣楡穬栠潂湩杯??敥瑭?慩汳????ㄠ㈱???椱漩挺核攭洱椸挼慢汲 ̄牓整獵灭潰湰猠敍猬?潄晵?瑯桮整?捓漬瀠敔灨潯摲??敹湫瑥爠潍瀠慃本攠獥?琠敡湬甮椠爲攰洱椱獡?琠潃??佳?獢甾戲?土??獢甾戠??摤牵楣癥?攠湳?慡挭楷摡楴晥楲攠摡?獩敤慩睦慩瑣敡牴??坮愠瑩敭牰?卣捴楳攠湳捥敡???呣敨捩桮渠潬污潲杶祡?????????ね??? Ⅱ:gene expression patterns in pluteus larvae. Comparative Bio-chemistry and Physiology Part A:Molecular & Integrative Physiology, 160(3):320-33
|