ZENG Yinxin, DONG Peiyan, QIAO Zongyun, ZHENG Tianling. Diversity of the aerobic anoxygenic phototrophy gene pufM in Arctic and Antarctic coastal seawaters[J]. Acta Oceanologica Sinica, 2016, 35(6): 68-77. doi: 10.1007/s13131-016-0877-y
Citation: ZENG Yinxin, DONG Peiyan, QIAO Zongyun, ZHENG Tianling. Diversity of the aerobic anoxygenic phototrophy gene pufM in Arctic and Antarctic coastal seawaters[J]. Acta Oceanologica Sinica, 2016, 35(6): 68-77. doi: 10.1007/s13131-016-0877-y

Diversity of the aerobic anoxygenic phototrophy gene pufM in Arctic and Antarctic coastal seawaters

doi: 10.1007/s13131-016-0877-y
  • Received Date: 2015-04-14
  • Rev Recd Date: 2015-08-07
  • Aerobic anoxygenic phototrophic (AAP) bacteria serve important functions in marine carbon and energy cycling because of their capability to utilize dissolved organic substrates and harvest light energy. AAP bacteria are widely distributed in marine environments, and their diversity has been examined in marine habitats. However, information about AAP bacteria at high latitudes remains insufficient to date. Therefore, this study determined the summer AAP bacterial diversity in Arctic Kongsfjorden and in the Antarctic coastal seawater of King George Island on the basis of pufM, a gene that encodes a pigment-binding protein subunit of the reaction center complex. Four pufM clone libraries were constructed, and 674 positive clones were obtained from four investigated stations (two in Kongsfjorden and two in the Antarctic Maxwell Bay). Arctic clones were clustered within the Alphaproteobacteria, whereas Antarctic clones were classified into the Alphaproteobacteria and Betaproteobacteria classes. Rhodobacteraceae-like pufM genes dominated in all samples. In addition, sequences closely related to pufM encoded on a plasmid in Sulfitobacter guttiformis were predominant in both Arctic and Antarctic samples. This result indicates the transpolar or even global distribution of pufM genes in marine environments. Meanwhile, differences between the Arctic and Antarctic sequences may prove polar endemism. These results indicate the important role of Rhodobacteraceae as AAP bacteria in bipolar coastal waters.
  • loading
  • Achenbach L A, Carey J, Madigan M T. 2001. Photosynthetic and phylogenetic primers for detection of anoxygenic phototrophs in natural environments. Applied and Environmental Microbi-ology, 67(7): 2922-2926
    Bano N, Hollibaugh J T. 2000. Diversity and distribution of DNA se-quences with affinity to ammonia-oxidizing bacteria of the β-subdivision of the class Proteobacteria in the Arctic Ocean. Ap-plied and Environmental Microbiology, 66(5): 1960-1969
    Beatty J T. 2002. On the natural selection and evolution of the aerobic phototrophic bacteria. Photosynthesis Research, 73(1-3): 109-114
    Béjà O, Suzuki M T, Heidelberg J F, et al. 2002. Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature, 415(6872): 630-633
    Boeuf D, Cottrell M T, Kirchman D L, et al. 2013. Summer com-munity structure of aerobic anoxygenic phototrophic bacteria in the western Arctic Ocean. FEMS Microbiology Ecology, 85(3): 417-432
    Bosshard P P, Santini Y, Grüter D, et al. 2000. Bacterial diversity and community composition in the chemocline of the meromictic alpine Lake Cadagno as revealed by 16S rDNA analysis. FEMS Microbiology Ecology, 31(2): 173-182
    Cottier F, Tverberg V, Inall M, et al. 2005. Water mass modification in an Arctic fjord through cross-shelf exchange: the seasonal hy-drography of Kongsfjorden, Svalbard. Journal of Geophysical Research, 110(C12): C12005
    Cottrell M T, Kirchman D L. 2009. Photoheterotrophic microbes in the Arctic Ocean in summer and winter. Applied and Environ-mental Microbiology, 75(15): 4958-4966
    Cottrell M T, Mannino A, Kirchman D L. 2006. Aerobic anoxygenic phototrophic bacteria in the Mid-Atlantic Bight and the North Pacific Gyre. Applied and Environmental Microbiology, 72(1): 557-564
    Cottrell M T, Ras J, Kirchman D L. 2010. Bacteriochlorophyll and community structure of aerobic anoxygenic phototrophic bac-teria in a particle-rich estuary. The ISME Journal, 4(7): 945-954
    De Corte D, Sintes E, Yokokawa T, et al. 2013. Comparison between MICRO-CARD-FISH and 16S rRNA gene clone libraries to as-sess the active versus total bacterial community in the coastal Arctic. Environmental Microbiology Reports, 5(2): 272-281
    Ferrera I, Borrego C M, Salazar G, et al. 2014. Marked seasonality of aerobic anoxygenic phototrophic bacteria in the coastal NW Mediterranean Sea as revealed by cell abundance, pigment concentration and pyrosequencing of pufM gene. Environ-mental Microbiology, 16(9): 2953-2965
    Ghiglione J F, Galand P E, Pommier T, et al. 2012. Pole-to-pole biogeography of surface and deep marine bacterial communit-ies. Proceedings of the National Academy of Sciences of the United States America, 109(43): 17633-17638
    Hojerová E, Ma.ín M, Brunet C, et al. 2011. Distribution and growth of aerobic anoxygenic phototrophs in the Mediterranean Sea. Environmental Microbiology, 13(10): 2717-2725
    Hollibaugh J T, Bano N, Ducklow H W. 2002. Widespread distribu-tion in polar oceans of a 16S rRNA gene sequence with affinity to Nitrosospira-like ammonia-oxidizing bacteria. Applied and Environmental Microbiology, 68(3): 1478-1484
    Huber T, Faulkner G, Hugenholtz P. 2004. Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics, 20(14): 2317-2319
    Jeanthon C, Boeuf D, Dahan O, et al. 2011. Diversity of cultivated and metabolically active aerobic anoxygenic phototrophic bacteria along an oligotrophic gradient in the Mediterranean Sea. Biogeosciences, 8(7): 1955-1970
    Jiao Nianzhi, Zhang Yao, Zeng Yonghui, et al. 2007. Distinct distribu-tion pattern of abundance and diversity of aerobic anoxygenic phototrophic bacteria in the global ocean. Environmental Mi-crobiology, 9(12): 3091-3099
    Khim B K, Yoon H I. 2003. Postglacial marine environmental changes in Maxwell Bay, King George Island, West Antarctica. Polar Re-search, 22(2): 341-353
    Kirchman D L, Stegman M R, Nikrad M P, et al. 2014. Abundance, size, and activity of aerobic anoxygenic phototrophic bacteria in coastal waters of the West Antarctic Peninsula. Aquatic Mi-crobial Ecology, 73(1): 41-49
    Koblí.ek M, Béjà O, Bidigare R R, et al. 2003. Isolation and character-ization of Erythrobacter sp. strains from the upper ocean. Archives of Microbiology, 180(5): 327-338
    Koblí.ek M, Moulisová V, Muroňová M, et al. 2015. Horizontal trans-fers of two types of puf operons among phototrophic members of the Roseobacter clade. Folia Microbiologica, 60(1): 37-43
    Koh E Y, Martin A R, McMinn A, et al. 2012. Recent advances and fu-ture perspectives in microbial phototrophy in Antarctic sea ice. Biology, 1(3): 542-556
    Koh E Y, Phua W, Ryan K G. 2011. Aerobic anoxygenic phototrophic bacteria in Antarctic sea ice and seawater. Environmental Mi-crobiology Reports, 3(6): 710-716
    Kolber Z S, Van Dover C L, Niederman R A, et al. 2000. Bacterial pho-tosynthesis in surface waters of the open ocean. Nature, 407(6801): 177-179
    Kolber Z S, Plumley F G, Lang A S, et al. 2001. Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science, 292(5526): 2492-2495
    Lami R, Cottrell M T, Ras J, et al. 2007. High abundances of aerobic anoxygenic photosynthetic bacteria in the South Pacific Ocean. Applied and Environmental Microbiology, 73(13): 4198-4205
    Lehours A C, Cottrell M T, Dahan O, et al. 2010. Summer distribution and diversity of aerobic anoxygenic phototrophic bacteria in the Mediterranean Sea in relation to environmental variables. FEMS Microbiology Ecology, 74(2): 397-409
    López O, García M A, Arcilla A S. 1994. Tidal and residual currents in the Bransfield Strait, Antarctica. Annales Geophysicae, 12(9): 887-902
    N.dzarek A. 2008. Sources, diversity and circulation of biogenic com-pounds in Admiralty Bay, King George Island, Antarctica. Ant-arctic Science, 20(2): 135-145
    Nelson Silva S, He楬牢潬湩?浧攠湅琠慗氬??楩捬牬潡扦楡漮汥漠杖礬?????????????ㄠ????扡牢?婬敩湴杹?奩楮渠确極渭??奩略?奴漠湣杯??入楮慴潲?婴潩湯杮祳甠湡??敵瑮?愠汅???と?????楳癬敡牮獤椬琠祁?潴晡?扣慴捩?瑡攬爠楤潵灲氭慩湮歧琠漱渹?椱渭?挹漹愳献琠慐汯?獡敲愠睒慥瑳敥牡獲?潨昬??椴氨搱攩猺?倶改渭椸渲猼畢汲愾???楁測朠??敢潥牨杩攠??猠汋慯湢摬???渳琷愻牺捥瑫椠捍愬???爠捡桬椮瘠攲猰‰漵昮??楯捳牥潯扢楡潣汴潥杲礭??????????????????扥牤?婡敮湤朠?奥楤湩硴楥湲??婮桥慡湮朠??慡渠条???敢??椠慡湮景數湹杧??敩瑣?慰汨???び?????慴挭瑩散爠楰潯灰汵慬湡歴瑩潯湮?挮漠流浰異湬楩瑥祤?獡瑮牤甠捅瑮當物敲?楮湭?瑮桴敡??牍捩瑣楲捯?睩慯瑬敯牧獹?愠猷?爨攱瘩攺愠氳攴搴?戳礵″瀼祢牲漾獐敩煱畵敥湴挠楁渠杍?潔昬???卨?牥剰乥??朠敊渠敆猬???湬瑨潵湩楳攠?瘬愠湥??敡敬甮眠攲渰栱漰攮欠???ど????????は???????扳牴?婮攠湡杮?夠楢湡硣楴湥??婡桬攠湣杯?呭極慮湩汴楩湥杳???椠??畯椠牁潲湣杴??㈠てな????漠洨浓異湩楴瑳礭?捥潲浧灥潮猩椮?瑐楯潬湡?漠時?瑯桬敯?浹愬爠椳渳攨?戱愩挺琠攱爵椲漱瀭氱愵渳欶琼潢湲 ̄楐湲??潥湬杬獡映橓漬爠摁敬湬??卩灥楲琠獍戬攠版?杣敨渠??愠獥?爠敡癬攮愠氲攰搰?戮礠???卯?牥删乯??条敮湩敺?慴湩慯汮礠獡楮獤??偯潣污慬物??楴潩汯潮朠祯?????ㄠば???????????は?戠牴?婥栠数湨杯?兯楳慹湮杴???楩畳?奲慥湡瑣楴湩杯??卣瑥敮楴湥摲氠敩牮????敬瑯?慥汮???っ????倠祤物潶獥敲煳略攠湭捡楲湩杮?愠湁慬汰票獡楰獲?潴晥?慢敡牣潴扥楲捩?愮渠潁硰祰杬敩湥楤挠?灮桤漠瑅潮瑶物潲灯桮業捥?扴慡捬琠敍物楣慲汯?捩潯浬?浧畹測椠琷礰?猶琩爺甠挳琳甶爰攭″椳渶?琼桢敲 ̄潒污楶来潮瑳牣潨灬桡楧挠?眬攠獓瑡敨牭渠?倬愠捐楥晲楮捴?佡捬敥慲渠?????匠??椮挠爱漹戹椹漮氠潈杩祧??敢瑡瑣整牥獲??????????晳湩癴べ????摰潥楲???づ??ぬ???景敬浤猠汭敡?晩湮癥???diments. Applied and En-vironmental Microbiology, 65(9): 3982-3989
    Schloss P D, Handelsman J. 2005. Introducing DOTUR, a computer program for defining operational taxonomic units and estimat-ing species richness. Applied and Environmental Microbiology, 71(3): 1501-1506
    Schloss P D, Westcott S L, Ryabin T, et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75(23): 7537-7541
    Schwalbach M S, Fuhrman J A. 2005. Wide-ranging abundances of aerobic anoxygenic phototrophic bacteria in the world ocean revealed by epifluorescence microscopy and quantitative PCR. Limnology and Oceanography, 50(2): 620-628
    Shiba T, Harashima K. 1986. Aerobic photosynthetic bacteria. Micro-biology Science, 3(12): 376-378
    Sieracki M E, Gilg I C, Thier E C, et al. 2006. Distribution of plankton-ic aerobic anoxygenic photoheterotrophic bacteria in the northwest Atlantic. Limnology and Oceanography, 51(1): 38-46
    S.ndergaard M, Middelboe M. 1995. A cross-system analysis of labile dissolved organic carbon. Marine Ecology Progress Series, 118: 283-294
    Sul W J, Oliver T A, Ducklow H W, et al. 2013. Marine bacteria exhibit a bipolar distribution. Proceedings of the National Academy of Sciences of the United States America, 110(6): 2342-2347
    Svendsen H, Beszczynska-M.ller A, Hagen J O, et al. 2002. The phys-ical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard. Polar Research, 21(1): 133-166
    Tamura K, Peterson D, Peterson N, et al. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evol-utionary distance, and maximum parsimony methods. Molecu-lar Biology and Evolution, 28(10): 2731-2739
    Tank M, Blümel M, Imhoff J F. 2011. Communities of purple sulfur bacteria in a Baltic Sea coastal lagoon analyzed by puf LM gene libraries and the impact of temperature and NaCl concentra-tion in experimental enrichment cultures. FEMS Microbiology Ecology, 78(3): 428-438
    Thiel V, Tank M, Neulinger S C, et al. 2010. Unique communities of anoxygenic phototrophic bacteria in saline lakes of Salar de Atacama (Chile): evidence for a new phylogenetic lineage of phototrophic Gammaproteobacteria from pufLM gene ana-lyses. FEMS Microbiology Ecology, 74(3): 510-522
    Waidner L A, Kirchman D L. 2008. Diversity and distribution of eco-types of the aerobic anoxygenic phototrophy gene pufM in the Delaware estuary. Applied and Environmental Microbiology, 74(13): 4012-4021
    Yurkov V, Csotonyi J T. 2009. New light on aerobic anoxygenic photo-trophs. In: Hunter C N, Daldal F, Thurnauer M C, et al., eds. The Purple Phototrophic Bacteria. Netherlands: Springer, 31-55
    Yutin N, Suzuki M T, Béjà O. 2005. Novel primers reveal wider di-versity among marine aerobic anoxygenic phototrophs. Ap-plied and Environmental Microbiology, 71(12): 8958-8962
    Yutin N, Suzuki M T, Teeling H, et al. 2007. Assessing diversity and biogeography of aerobic anoxygenic phototrophic bacteria in surface waters of the Atlantic and Pacific Oceans using the Global Ocean Sampling expedition metagenomes. Env
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1088) PDF downloads(849) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return