Citation: | DENG Yunyan, HU Zhangxi, MA Zhaopeng, TANG Ying Zhong. Validation of reference genes for gene expression studies in the dinoflagellate Akashiwo sanguinea by quantitative real-time RT-PCR[J]. Acta Oceanologica Sinica, 2016, 35(8): 106-113. doi: 10.1007/s13131-016-0887-9 |
Andersen C L, Jensen J L,.rntoft T F. 2004. Normalization of real-time quantitative reverse transcription-PCR data:a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets.
|
Cancer Res, 64(15):5245-5250 Anderson D M, Cembella A D, Hallegraeff G M. 2012. Progress in un-derstanding harmful algal blooms:Paradigm shifts and new technologies for research, monitoring, and management. Annu Rev Mar Sci, 4(1):143-176
|
Bas A, Forsberg G, Hammarstr.m S, et al. 2004. Utility of the house-keeping genes 18S rRNA, β-actin and glyceraldehyde-3-phos-phate-dehydrogenase for normalization in real-time quantitat-ive reverse transcriptase-polymerase chain reaction analysis of gene expression in human T lymphocytes. Scand J Immunol, 59(6):566-573
|
Boldt L, Yellowlees D, Leggat W. 2010. Measuring Symbiodinium sp. gene expression patterns with quantitative real-time PCR. In:Proceedings of the 11th International Coral Reef Symposium. Florida:Ft Lauderdale, 118-122
|
Botes L, Smit A J, Cook P A. 2003. The potential threat of algal blooms to the abalone (Haliotis midae) mariculture industry situated around the South African coast. Harmful Algae, 2(4):247-259
|
Bravo I, Figueroa R I. 2014. Towards an ecological understanding of dinoflagellate cyst functions. Microorganisms, 2(1):11-32
|
Brunner A M, Yakovlev I A, Strauss S H. 2004. Validating internal con-trols for quantitative plant gene expression studies. BMC Plant Biol, 4:14
|
de Almeida M R, Ruedell C M, Ricachenevsky F K, et al. 2010. Refer-ence gene selection for quantitative reverse transcription-poly-merase chain reaction normalization during in vitro adventi-tious rooting in Eucalyptus globulus Labill. BMC Mol Biol, 11:73
|
Demidenko N V, Logacheva M D, Penin A A. 2011. Selection and val-idation of reference genes for quantitative real-time PCR in buckwheat (Fagopyrum esculentum) based on transcriptome sequence data. PLoS One, 6(5):e19434
|
Deng Yunyan, Yao Jianting, Wang Xiuliang, et al. 2012. Transcrip-tome sequencing and comparative analysis of Saccharina ja-ponica (Laminariales, Phaeophyceae) under blue light induc-tion. PLoS One, 7(6):e39704
|
Doblin M A, Blackburn S I, Hallegraeff G M. 1999. Growth and bio-mass stimulation of the toxic dinoflagellate Gymnodinium cat-enatum (Graham) by dissolved organic substances. J Exp Mar Biol Ecol, 236(1):33-47
|
Elbr.chter M. 2003. Dinophyte reproduction:progress and conflicts. J Phycol, 39(4):629-632
|
Expósito-Rodríguez M, Borges A A, Borges-Pérez A, et al. 2008. Selec-tion of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol, 8:131
|
Guillard R R L. 1975. Culture of phytoplankton for feeding marine in-vertebrates. In:Smith W L, Chanley M H, eds. Culture of Mar-ine Invertebrate Animals. New York:Plenum Press
|
Guo Ruoyu, Ki J S. 2012. Evaluation and validation of internal control genes for studying gene expression in the dinoflagellate Proro-centrum minimum using real-time PCR. Eur J Protistol, 48(3):199-206
|
Hallegraeff G M, Bolch C J. 1991. Transport of toxic dinoflagellate cysts via ships' ballast water. Mar Pollut Bull, 22(1):27-30
|
Hu Ruibo, Fan Chengming, Li Hongyu, et al. 2009. Evaluation of pu-tative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR. BMC Mol Biol, 10:93
|
Huggett J, Dheda K, Bustin S, et al. 2005. Real-time RT-PCR normal-isation; strategies and considerations. Genes Immun, 6(4):279-284
|
Jessup D A, Miller M A, Ryan J P, et al. 2009. Mass stranding of mar-ine birds caused by a surfactant-producing red tide. PLoS One, 4(2):e4550
|
Lee J M, Roche J R, Donaghy D J, et al. 2010. Validation of reference genes for quantitative RT-PCR studies of gene expression in perennial ryegrass (Lolium perenne L.). BMC Mol Biol, 11:8
|
Matsubara T, Nagasoe S, Yamasaki Y, et al. 2007. Effects of temperat-ure, salinity, and irradiance on the growth of the dinoflagellate Akashiwo sanguinea. J Exp Mar Biol Ecol, 342(2):226-230
|
Pfaffl M W. 2001. A new mathematical model for relative quantifica-tion in real-time RT-PCR. Nucleic Acids Res, 29(9):e45
|
Pfaffl M W, Tichopad A, Prgomet C, et al. 2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity:BestKeeper-Excel-based tool using pair-wise correlations. Biotechnol Lett, 26(6):509-515
|
Radoni. A, Thulke S, Mackay I M, et al. 2004. Guideline to reference gene selection for quantitative real-time PCR. Biochem Bio-phys Res Commun, 313(4):856-862
|
Rosic N N, Pernice M, Rodriguez-Lanetty M, et al. 2011. Validation of housekeeping genes for gene expression studies in Symbiodini-um exposed to thermal and light stress. Mar Biotechnol, 13(3):355-365
|
Steidinger K A, Tangen K. 1996. Dinoflagellates. In:Tomas C R, ed. Identifying Marine Diatoms and Dinoflagellates. New York:Academic Press
|
Tang Yingzhong, Gobler C J. 2012. The toxic dinoflagellate Cochlodinium polykrikoides (Dinophyceae) produces resting cysts. Harmful Algae, 20:71-80
|
Tang Yingzhong, Gobler C J. 2015. Sexual resting cyst production by the dinoflagellate Akashiwo sanguinea:a potential mechanism contributing to the ubiquitous distribution of a harmful alga. J Phycol, 51(2):298-309
|
Vandesompele J, De Preter K, Pattyn F, et al. 2002. Accurate normal-ization of real-time quantitative RT-PCR data by geometric av-eraging of multiple internal control genes. Genome Biol, 3(7):research0034.1
|
Woelke C E. 1961. Pacific oyster Crassostrea gigas mortalities:with notes on common oyster predators in Washington waters. Proc Natl Shellfisheries Assoc, 50:53-66
|
1. | Zhengke Li, Yong Zhang, Wei Li, et al. Conservation and architecture of housekeeping genes in the model marine diatom Thalassiosira pseudonana. New Phytologist, 2022, 234(4): 1363. doi:10.1111/nph.18039 | |
2. | Xiaomei Wu, Ling Li, Senjie Lin. Energy metabolism and genetic information processing mark major transitions in the life history of Scrippsiella acuminata (Dinophyceae). Harmful Algae, 2022, 116: 102248. doi:10.1016/j.hal.2022.102248 | |
3. | Tiantian Chen, Yun Liu, Zhangxi Hu, et al. Chloroplast Ultrastructure and Photosynthetic Response of the Dinoflagellate Akashiwo sanguinea Throughout Infection by Amoebophrya sp.. Frontiers in Marine Science, 2021, 8 doi:10.3389/fmars.2021.742498 | |
4. | Yun Liu, Tiantian Chen, Xiaoting Wang, et al. Variation in the photosynthetic activities of the dinoflagellate Akashiwo sanguinea during formation of resting cysts. Marine Biology, 2020, 167(11) doi:10.1007/s00227-020-03774-y | |
5. | Xinguo Shi, Yuchun Xiao, Lemian Liu, et al. Exploring reliable reference genes for gene expression normalization in Karenia mikimotoi using real-time PCR. Journal of Applied Phycology, 2020, 32(1): 431. doi:10.1007/s10811-019-01961-z | |
6. | Zeeshan Niaz, Zhenghong Sui, Sadaf Riaz, et al. Identification of valid reference genes for the normalization of RT-qPCR gene expression data in Alexandrium catenella under different nutritional conditions. Journal of Applied Phycology, 2019, 31(3): 1819. doi:10.1007/s10811-018-1664-2 | |
7. | Yunyan Deng, Zhangxi Hu, Zhaoyang Chai, et al. Molecular cloning of heat shock protein 60 (Hsp60) and 10 (Hsp10) genes from the cosmopolitan and harmful dinoflagellate Scrippsiella trochoidea and their differential transcriptions responding to temperature stress and alteration of life cycle. Marine Biology, 2019, 166(1) doi:10.1007/s00227-018-3455-3 | |
8. | Marianne Ellegaard, Sofia Ribeiro. The long-term persistence of phytoplankton resting stages in aquatic ‘seed banks’. Biological Reviews, 2018, 93(1): 166. doi:10.1111/brv.12338 | |
9. | Yunyan Deng, Zhangxi Hu, Lixia Shang, et al. Transcriptomic Analyses of Scrippsiella trochoidea Reveals Processes Regulating Encystment and Dormancy in the Life Cycle of a Dinoflagellate, with a Particular Attention to the Role of Abscisic Acid. Frontiers in Microbiology, 2017, 8 doi:10.3389/fmicb.2017.02450 |