JI Xuanliang, LIU Guimei, GAO Shan, WANG Hui, ZHANG Miaoyin. Temporal and spatial variability of the carbon cycle in the east of China's seas: a three-dimensional physical-biogeochemical modeling study[J]. Acta Oceanologica Sinica, 2017, 36(3): 60-71. doi: 10.1007/s13131-017-0977-3
Citation: JI Xuanliang, LIU Guimei, GAO Shan, WANG Hui, ZHANG Miaoyin. Temporal and spatial variability of the carbon cycle in the east of China's seas: a three-dimensional physical-biogeochemical modeling study[J]. Acta Oceanologica Sinica, 2017, 36(3): 60-71. doi: 10.1007/s13131-017-0977-3

Temporal and spatial variability of the carbon cycle in the east of China's seas: a three-dimensional physical-biogeochemical modeling study

doi: 10.1007/s13131-017-0977-3
  • Received Date: 2015-12-07
  • Rev Recd Date: 2016-05-31
  • In the east of China's seas, there is a wide range of the continental shelf. The nutrient cycle and the carbon cycle in the east of China's seas exhibit a strong variability on seasonal to decadal time scales. On the basis of a regional ocean modeling system (ROMS), a three dimensional physical-biogeochemical model including the carbon cycle with the resolution (1/12)°×(1/12)° is established to investigate the physical variations, ecosystem responses and carbon cycle consequences in the east of China's seas. The ROMS-Nutrient Phytoplankton Zooplankton Detritus (NPZD) model is driven by daily air-sea fluxes (wind stress, long wave radiation, short wave radiation, sensible heat and latent heat, freshwater fluxes) that derived from the National Centers for Environmental Prediction (NCEP) reanalysis2 from 1982 to 2005. The coupled model is capable of reproducing the observed seasonal variation characteristics over the same period in the East China Sea. The integrated air-sea CO2 flux over the entire east of China's seas reveals a strong seasonal cycle, functioning as a source of CO2 to the atmosphere from June to October, while serving as a sink of CO2 to the atmosphere in the other months. The 24 a mean value of air-sea CO2 flux over the entire east of China's seas is about 1.06 mol/(m2·a), which is equivalent to a regional total of 3.22 Mt/a, indicating that in the east of China's seas there is a sink of CO2 to the atmosphere. The partial pressure of carbon dioxide in sea water in the east of China's seas has an increasing rate of 1.15 μatm/a (1μtm/a=0.101 325 Pa), but pH in sea water has an opposite tendency, which decreases with a rate of 0.001 3 a-1 from 1982 to 2005. Biological activity is a dominant factor that controls the pCO2air in the east of China's seas, and followed by a temperature. The inverse relationship between the interannual variability of air-sea CO2 flux averaged from the domain area and Niño3 SST Index indicates that the carbon cycle in the east of China's seas has a high correlation with El Niño-Southern Oscillation (ENSO).
  • loading
  • Blumberg A F, Kantha L H. 1985. Open boundary conditions for circulation models. J Hydr Engin, 111(2):237-255
    Bozec Y, Thomas H, Elkalay K, et al. 2005. The continental shelf pump for CO2 in the North Sea-Evidence from summer observation. Marine Chemistry, 93(2-4):131-147
    Cai Weijun, Dai Minhan, Wang Yongchen. 2006. Air-sea exchange of carbon dioxide in ocean margins:a province-based synthesis. Geophysical Research Letters, 33(12):L12603, doi: 10.1029/2006GL026219[DOI:10.1029/2006GL026219]
    Chai Fei, Liu Guimei, Xue Huijie, et al. 2009. Seasonal and interannual variability of carbon cycle in South China Sea:a three-dimensional physical-biogeochemical modeling study. Journal of Oceanography, 65(5):703-720
    Duan Shuiwang, Zhang Shen. 1999. The variations of nitrogen and phosphorus concentrations in the monitoring stations of the three major rivers in China. Scientia Geographica Sinica (in Chinese), 19(5):411-416
    Feely R A, Boutin J, Cosca C E, et al. 2002. Seasonal and interannual variability of CO2 in the equatorial Pacific. Deep Sea Research Part II:Topical Studies in Oceanography, 49(13-14):2443-2469
    Feely R A, Sabine C L, Takahashi T, et al. 2001. Uptake and storage of carbon dioxide in the ocean:The global CO2 survey. Oceanography, 14(4):18-32
    Fennel K, Wilkin J, Levin J, et al. 2006. Nitrogen cycling in the middle Atlantic bight:results from a three-dimensional model and implications for the North Atlantic nitrogen budget. Global Biogeochemical Cycles, 20(3):GB3007, doi: 10.1029/2005GB002456[DOI:10.1029/2005GB002456]
    Gruber N, Frenzel H, Doney S C, et al. 2006. Eddy-Resolving Simulation of Plankton Ecosystem Dynamics in the California Current System. Deep Sea Research Part Ⅰ:Oceanographic Research Papers, 53(9):1483-1516
    Gypens N, Lancelot C, Borges A V. 2004. Carbon dynamics and CO2 air-sea exchanges in the eutrophied coastal waters of the southern bight of the North Sea:a modeling study. Biogeosciences Discussions, 1:561-589
    Hu Haoguo, Wan Zhenwen, Yuan Yeli. 2004. Simulation of seasonal variation of phytoplankton in the southern Huanghai (Yellow) Sea and analysis on its influential factors. Haiyang Xuebao (in Chinese), 26(6):74-88
    Ji Xuanliang, Liu Guimei, Gao Shan, et al. 2015. Parameter sensitivity study of the biogeochemical model in the china coastal seas. Acta Oceanologica Sinica, 34(12):51-60, doi: 10.1007/s13131-015-0762-0[DOI:10.1007/s13131-015-0762-0]
    Jin Xin, Shi Guangyu. 2001. The role of biological pump in ocean carbon cycle. Chinese Journal of Atmospheric Sciences (in Chinese), 25(5):683-688
    Large W G, McWilliams J C, Doney S C. 1994. Oceanic vertical mixing:a review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics, 32(4):363-403
    Liu Hao, Yin Baoshu. 2007. Model study on Bohai ecosystem:II. Annual cycle of nutrient-phytoplankton dynamics. Haiyang Xuebao (in Chinese), 29(4):20-33
    Liu K K, Chao S Y, Shaw P T, et al. 2002. Monsoon-forced chlorophyll distribution and primary production in the south china sea:observations and a numerical study. Deep Sea Research:Part I. Oceanographic Research Papers, 49(8):1387-1412
    Lu Zhongming, Gan Jianping, Dai Minhan. 2012. Modeling seasonal and diurnal pCO2 variations in the northern South China Sea. Journal of Marine Systems, 92(1):30-41
    Millero F J. 1995. Thermodynamics of the carbon dioxide system in the oceans. Geochimica et Cosmochimica Acta, 59(4):661-677
    Morel A, Berthon J F. 1989. Surface pigments, algal biomass profiles, and potential production of the euphotic layer:relationships reinvestigated in view of remote-sensing applications. Limnology and Oceanography, 34(8):1545-1562
    Naqvi S W A, Bange H W, Gibb S W, et al. 2005. Biogeochemical ocean-atmosphere transfers in the Arabian Sea. Progress in Oceanography, 65(2-4):116-144
    Orr J C, Fabry V J, Aumont O, et al. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437(7059):681-686
    Qiao Ran, Wang Zhanggui, Zhang Bing, et al. 2005. Observation and research of carbon dioxide in the ocean. Marine Forecasts (in Chinese), 22(S1):106-114
    IPCC. 2000. Special Report on Emission Scenarios. A special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge:Cambridge University Press
    Shchepetkin A F, McWilliams J C. 2003. A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate. Journal of Geophysical Research:Ocean, 108(C3):3090
    Shim J, Kim D, Kang Y C, et al. 2007. Seasonal variations in pCO2 and its controlling factors in surface seawater of the northern East China Sea. Continental Shelf Research, 27(20):2623-2636
    Solomon S, Qin D, Manning M, et al. 2007. Climate change 2007:Synthesis Report. Contribution of Working Group I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers. Cambridge:Cambridge University Press
    Takahashi T, Sutherland S C, Feely R A, et al. 2003. Decadal variation of the surface water pCO2 in the western and central equatorial Pacific. Science, 302(5646):852-856
    Takahashi T, Sutherland S C, Sweeney C, et al. 2002. Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep Sea Research:Part II. Topical Studies in Oceanography, 49(9-10):1601-1622
    Takahashi T, Sutherland S C, Wanninkhof R, et al. 2009. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep Sea Research:Part II. Topical Studies in Oceanography, 56(8-10):554-577
    Tseng C M, Liu K K, Gong G C M, et al. 2011. CO2 uptake in the East China Sea relying on Changjiang runoff is prone to change. Geophysical Research Letters, 38(24):L24609, doi: 10.1029/2011GL049774[DOI:10.1029/2011GL049774]
    Tseng C M, Shen P Y, Liu K K. 2013. Synthesis of observed air-sea CO2 exchange fluxes in the river-dominated East China Sea and improved estimates of annual and seasonal net mean fluxes. Biogeosciences Discussions, 10(8):13977-14007, doi: 10.5194/bgd-10-13977-2013[DOI:10.5194/bgd-10-13977-2013]
    Tsunogai S, Watanabe S, Nakamura J, et al. 1997. A preliminary study of carbon system in the East China Sea. Journal of Oceanography, 53(1):9-17
    Tsunogai S, Watanabe S, Sato T. 1999. Is there a "continental shelf pump" for the absorption of atmospheric CO2?. Tellus B, 51(3):701-712
    Wang Menghua, Shi Wei. 2005. Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.:two case studies. Geophysical Research Letters, 32(13):L13606
    Wang Menghua, Tang Junwu, Shi Wei. 2007. MODIS-derived ocean color products along the China East coastal region. Geophysical Research Letters, 34(6):L06611
    Wang S L, Chen C T A, Hong G H, et al. 2000. Carbon dioxide and related parameters in the East China Sea. Continental Shelf Research, 20:525-544
    Wang Xiujun, Christian J R, Murtugudde R, et al. 2006. Spatial and temporal variability of the surface water pCO2 and air-sea CO2 flux in the equatorial Pacific during 1980-2003:a basin-scale carbon cycle model. Journal of Geophysical Research:Oceans, 111(C7):C07S04
    Wanninkhof R. 1992. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research, 97(C5):7373-7382
    Weiss R F, Price B A. 1980. Nitrous oxide solubility in water and seawater. Marine Chemistry, 8(4):347-359
    Xue Liang, Zhang Longjun, Cai Weijun, et al. 2011. Air-sea CO2 fluxes in the southern Yellow Sea:an examination of the continental shelf pump hypothesis. Continental Shelf Research, 31(18):1904-1914
    Zhang Jing. 1996. Nutrient elements in large Chinese estuaries. Continental Shelf Research, 16(8):1023-1045
    Zhang Longjun, Zhang Yun. 2008. The distribution of partial pressure of CO2 in the Bohai Sea in summer. Periodical of Ocean University of China (in Chinese), 38(4):635-639
    Zhang Xiaoxiao, Yao Qingzheng, Chen Hongtao, et al. 2010. Seasonal variation and fluxes of nutrients in the lower reaches of the Yellow River. Periodical of Ocean University of China (in Chinese), 40(7):82-88
    Zheng Xiaoshen, Wei Hao, Wang Yuheng. 2012. Seasonal and inter-annual variations of Chl a concentration based on the remote sensing data in the yellow sea and East China Sea. Oceanologia et Limnologia Sinica (in Chinese), 43(3):649-654
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1284) PDF downloads(858) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return