Citation: | SUN Chaofeng, WU Zhaocai, TAO Chunhui, RUAN Aiguo, ZHANG Guoyin, GUO Zhikui, HUANG Enxian. The deep structure of the Duanqiao hydrothermal field at the Southwest Indian Ridge[J]. Acta Oceanologica Sinica, 2018, 37(3): 73-79. doi: 10.1007/s13131-017-0986-2 |
Alt J C. 2003. Hydrothermal fluxes at mid-ocean ridges and on ridge flanks. Comptes Rendus Geoscience, 335(10-11): 853-864
|
Asimow P D, Langmuir C H. 2003. The importance of water to oceanic mantle melting regimes. Nature, 421(6925): 815-820
|
Baker E T, Chen Y J, Jason P M. 1996. The relationship between near-axis hydrothermal cooling and the spreading rate of mid-ocean ridges. Earth and Planetary Science Letters, 142(1-2): 137-145
|
Baker E T, German C R. 2004. On the global distribution of hydrothermal vent fields. In: German C R, Lin Jian, Parson L M, et al., eds. Mid-Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Oceans. Washington DC: American Geophysical Union, 245-266
|
Cannat M, Rommevaux-Jestin C, Sauter D, et al. 1999. Formation of the axial relief at the very slow spreading Southwest Indian Ridge (49° to 69°E). Journal of Geophysical Research, 104(B10): 22825-22843
|
Cannat M, Sauter D, Mendel V, et al. 2004. Spreading geometry and melt supply at the ultraslow-spreading Southwest Indian Ridge. In: AGU Fall Meeting Abstracts 2004. v 1. Washington DC: American Geophysical Union, 3
|
Cannat M, Sauter D, Mendel V, et al. 2006. Modes of seafloor generation at a melt-poor ultraslow-spreading ridge. Geology, 34(7): 605-608
|
Charlou J L, Fouquet Y, Donval J P, et al. 1996. Mineral and gas chemistry of hydrothermal fluids on an ultrafast spreading ridge: east Pacific Rise, 17° to 19°S (Naudur cruise, 1993) phase separation processes controlled by volcanic and tectonic activity. Journal of Geophysical Research, 101(B7): 15899-15919
|
Chen Y J. 1992. Oceanic crustal thickness versus spreading rate. Geophysical Research Letters, 19(8): 753-756
|
Dick H J B, Lin Jian, Schouten H. 2003. An ultraslow-spreading class of ocean ridge. Nature, 426(6956): 405-412
|
Dick H J B, Natland J H, Alt J C, et al. 2000. A long in situ section of the lower ocean crust: results of ODP leg 176 drilling at the Southwest Indian Ridge. Earth and Planetary Science Letters, 179(1): 31-51
|
Ding Liuhuai, Chen Ximing, Gao Yuqing. 2009. Seafloor massive sulfides: the frontier of deep ocean miming. Ocean Technology (in Chinese), 28(1): 126-132
|
Edmonds H N, Michael P J, Baker E T, et al. 2003. Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel Ridge in the Arctic Ocean. Nature, 421(6920): 252-256
|
Escartín J, Smith D K, Cann J, et al. 2008. Central role of detachment faults in accretion of slow-spreading oceanic lithosphere. Nature, 455(7214): 790-794
|
Fisher R L, Goodwillie A M. 1997. The physiography of the Southwest Indian Ridge. Marine Geophysical Researches, 19(6): 451-455
|
Font L, Murton B J, Roberts S, et al. 2007. Variations in melt productivity and melting conditions along SWIR (70°–49°E): evidence from olivine-hosted and plagioclase-hosted melt inclusions. Journal of Petrology, 48(8): 1471-1494
|
Galley A G. 1993. Characteristics of semi-conformable alteration zones associated with volcanogenic massive sulphide districts. Journal of Geochemical Exploration, 48(2): 175-200
|
Gardner G H F, Gardner L W, Gregory A R. 1974. Formation velocity and density-the diagnostic basics for stratigraphic traps. Geophysics, 39(6): 770-780
|
Georgen J E, Kurz M D, Dick H J B, et al. 2003. Low 3He/4He ratios in basalt glasses from the western Southwest Indian Ridge (10°-24°E). Earth and Planetary Science Letters, 206(3-4): 509-528
|
Georgen J E, Lin Jian. 2003. Plume-transform interactions at ultra-slow spreading ridges: implications for the Southwest Indian Ridge. Geochemistry, Geophysics, Geosystems, 4(9): 9106
|
German C R, Lin Jian. 2004. The thermal structure of the oceanic crust, ridge-spreading and hydrothermal circulation: How well do we understand their Inter-Connections. In: German C R, Lin Jian, Parson L M, eds. Mid-Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Oceans. Washington DC: American Geophysical Union, 1-18
|
Ito G, Lin Jian, Gable C W. 1997. Interaction of mantle plumes and migrating mid-ocean ridges: implications for the Galápagos plume-ridge system. Journal of Geophysical Research, 102(B7): 15403-15417
|
Ito G, Shen Yang, Hirth G, et al. 1999. Mantle flow, melting, and dehydration of the Iceland mantle plume. Earth and Planetary Science Letters, 165(1): 81-96
|
LaCoste and Romberg Company. 2004. Model “S” Air-Sea Dynamic Gravity Meter System Ⅱ Instruction Manual. Austin: LaCoste and Romberg Company
|
Li Jiabiao, Jian Hanchao, Chen Y J, et al. 2015a. Seismic observation of an extremely magmatic accretion at the ultraslow spreading Southwest Indian Ridge. Geophysical Research Letters, 42(8): 2656-2663
|
Li Sanzhong, Suo Yanhui, Liu Xin, et al. 2015b. Tectonic reconstruction and mineralization models of the Indian Ocean: insights from SWIR. Geotectonica et Metallogenia (in Chinese), 39(1): 30-43
|
Liu Weiyong, Zheng Lianfu, Tao Chunhui, et al. 2011. On the feature of seafloor hydrothermal systems' evolutionary and its mineralization in Mid-Ocean Ridge. Journal of Marine Sciences (in Chinese), 29(1): 25-33
|
Lowell B. 2008. Focus on Modeling: state of the art & future challenges. Ridge 2000 Events (summer), 5-9
|
Martin W, Baross J, Kelley D, et al. 2008. Hydrothermal vents and the origin of life. Nature Reviews Microbiology, 6(11): 805-814
|
Mendel V, Sauter D, Rommevaux-Jestin C, et al. 2003. Magmato-tectonic cyclicity at the ultra-slow spreading Southwest Indian Ridge: evidence from variations of axial volcanic ridge morphology and abyssal hills pattern. Geochemistry, Geophysics, Geosystems, 4(5): 9102
|
Meyzen C M, Toplis M J, Humler E, et al. 2003. A discontinuity in mantle composition beneath the Southwest Indian Ridge. Nature, 421(6924): 731-733
|
Minshull T A, Muller M R, White R S. 2006. Crustal structure of the Southwest Indian Ridge at 66°E: seismic constraints. Geophysical Journal International, 166(1): 135-147
|
Nath B N. 2007. Hydrothermal Minerals. Indian: National institute of Oceanography, 78-83
|
Niu Xiongwei, Ruan Aiguo, Li Jiabiao, et al. 2015. Along-axis variation in crustal thickness at the ultraslow spreading Southwest Indian Ridge (50°E) from a wide-angle seismic experiment. Geochemistry, Geophysics, Geosystems, 16(2): 468-485
|
Okino K, Matsuda K, Christie D M, et al. 2004. Development of oceanic detachment and asymmetric spreading at the Australian-Antarctic discordance. Geochemistry, Geophysics, Geosystems, 5(12): Q12012
|
Plank T, Langmuir C H. 1992. Effects of the melting regime on the composition of the oceanic crust. Journal of Geophysical Research, 97(B13): 19749-19770
|
Ribe N M. 1996. The dynamics of plume-ridge interaction: 2. Off-ridge plumes. Journal of Geophysical Research, 101(B7): 16195-16204
|
Ribe N M, Christensen U R, Theiβing J. 1995. The dynamics of plume-ridge interaction: 1. Ridge-centered plumes. Earth and Planetary Science Letters, 134(1-2): 155-168
|
Ruan Aiguo, Li Jiabiao, Niu Xiongwei, et al. 2014. Main characteristics of crustal structure of Southwest Indian Ridge. In: Committee of Information Technology, Chinese Geophysical Society. Abstract Set of Theses on Discussion and Application of Big Data, Cloud Computing and Geophysics (in Chinese). Shijiazhuang: Committee of Information Technology, Chinese Geophysical Society, 32-33
|
Sauter D, Cannat M. 2010. The ultraslow spreading Southwest Indian Ridge. In: Rona P A, Devey C W, Dyment J, et al., eds. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges, Vol 88. Washington DC: American Geophysical Union, 153-173
|
Sauter D, Cannat M, Meyzen C, et al. 2009. Propagation of a melting anomaly along the ultraslow Southwest Indian Ridge between 46°E and 52°20'E: interaction with the Crozet hotspot. Geophysical Journal International, 179(2): 687-699
|
Sauter D, Mendel V, Rommevaux-Jestin C, et al. 2004. Focused magmatism versus amagmatic spreading along the ultra-slow spreading Southwest Indian Ridge: Evidence from TOBI side scan sonar imagery. Geochemistry, Geophysics, Geosystems, 5(10): Q10K09
|
Sauter D, Patriat P, Rommevaux-Jestin C, et al. 2001. The Southwest Indian Ridge between 49°15'E and 57°E: focused accretion and magma redistribution. Earth and Planetary Science Letters, 192(3): 303-317
|
Seyler M, Cannat M, Mével C. 2003. Evidence for major-element heterogeneity in the mantle source of abyssal peridotites from the Southwest Indian Ridge (52° to 68°E). Geochemistry, Geophysics, Geosystems, 4(2): 9101
|
Standish J J, Dick H J B, Michael P J, et al. 2008. MORB generation beneath the ultraslow spreading Southwest Indian Ridge (9°–25°E): major element chemistry and the importance of process versus source. Geochemistry, Geophysics, Geosystems, 9(5): Q05004
|
Standish J J, Sims K W W. 2010. Young off-axis volcanism along the ultraslow-spreading Southwest Indian Ridge. Nature Geoscience, 3(4): 286-292
|
Stein C A, Stein S. 1994. Constraints on hydrothermal heat flux through the oceanic lithosphere from the global heat flow. Journal of Geophysical Research, 99(B2): 3081-3195
|
Suo Yanhui. 2014. Tectonic-magmatic processes of the Indian Ocean: evidence on the residual mantle Bouguer gravity anomaly (in Chinese) [dissertation]. Qingdao: Ocean University of China
|
Tao Chunhui, Li Huaiming, Jin Xiaobing, et al. 2014. Seafloor hydrothermal activity and polymetallic sulfide exploration on the southwest Indian ridge. Chinese Science Bulletin, 59(19): 2266-2276
|
Tao Chunhui, Lin Jian, Guo Shiqin, et al. 2012. First active hydrothermal vents on an ultraslow-spreading center: southwest Indian ridge. Geology, 40(1): 47-50
|
Tao Chunhui, Wu Tao, Jin Xiaobing, et al. 2013. Petrophysical characteristics of rocks and sulfides from the SWIR hydrothermal field. Acta Oceanologica Sinica, 32(12): 118-125
|
Tao Chunhui, Wu Guanghai, Ni Jianyu, et al. 2009. New hydrothermal fields found along the SWIR during the legs 5-7 of the Chinese DY115-20 Expedition. In: American Geophysical Union, Fall Meeting, Abstract OS21A-1150. Washington DC: American Geophysical Union
|
Tivey M K. 2007. Generation of seafloor hydrothermal vent fluids and associated mineral deposits. Oceanography, 20(1): 50-65
|
Tivey M A, Dyment J. 2010. The magnetic signature of hydrothermal systems in slow spreading environments. In: Rona P A, Devey C W, Dyment J, et al., eds. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Washington DC: American Geophysical Union, 43-66
|
Tucholke B E, Lin Jian, Kleinrock M C. 1998. Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlantic Ridge. Journal of Geophysical Research, 103(B5): 9857-9866
|
Vine F J, Moores E M. 1972. A model for the gross structure, petrology, and magnetic properties of oceanic crust. Geological Society of America Memoirs, 132: 195-206
|
Yao Huiqiang, Tao Chunhui, Song Chengbing, et al. 2011. Integration study on mode for seafloor plolymetallic sulfide exploration. Journal of Central South University: Science and Technology (in Chinese), 42(S2): 114-122
|
Zhang Tao, Gao Jinyao, Chen Mei. 2005. The reasonable correction of eötvös effect in marine gravity survey. Hydrographic Surveying and Charting, 25(2): 17-20
|
Zhang Tao, Lin Jian, Gao Jinyao. 2011. Interactions between hotspots and the Southwest Indian Ridge during the last 90 Ma: implications on the formation of oceanic plateaus and intra-plate seamounts. Science China: Earth Sciences, 54(8): 1177-1188
|
Zhang Tao, Lin Jian, Gao Jinyao. 2013. Magmatism and tectonic processes in Area A hydrothermal vent on the Southwest Indian Ridge. Science China: Earth Sciences, 56(12): 2186-2197
|
Zhao Minghui, Qiu Xuelin, Li Jiabiao, et al. 2013. Three-dimensional seismic structure of the Dragon Flag oceanic core complex at the ultraslow spreading Southwest Indian Ridge (49°39'E). Geochemistry, Geophysics, Geosystems, 14(10): 4544-4563
|
Zhou Huaiyang, Dick H J B. 2013. Thin crust as evidence for depleted mantle supporting the Marion Rise. Nature, 494(7436): 195-200
|