Citation: | SHU Qi, QIAO Fangli, SONG Zhenya, XIAO Bin. Effect of increasing Arctic river runoff on the Atlantic meridional overturning circulation:a model study[J]. Acta Oceanologica Sinica, 2017, 36(8): 59-65. doi: 10.1007/s13131-017-1009-z |
Bryden H L, Longworth H R, Cunningham S A. 2005. Slowing of the atlantic meridional overturning circulation at 25°N. Nature, 438(7068):655-657
|
Cheng Wei, Chiang J C H, Zhang Dongxiao. 2013. Atlantic meridional overturning circulation (AMOC) in CMIP5 models:RCP and historical simulations. Journal of Climate, 26(18):7187-7197
|
Dai Aiguo, Qian Taotao, Trenberth K E, et al. 2009. Changes in continental freshwater discharge from 1948 to 2004. Journal of Climate, 22(10):2773-2792
|
Fichot C G, Kaiser K, Hooker S B, et al. 2013. Pan-Arctic distributions of continental runoff in the Arctic Ocean. Scientific reports, 3:1053
|
England M H. 1995. The age of water and ventilation timescales in a global ocean model. Journal of Physical Oceanography, 25(11):2756-2777
|
Griffies S M. 2012. Elements of the modular ocean model (MOM):2012 release. GFDL Ocean Group Technical Report No. 7. Princeton, NJ:NOAA/Geophysical Fluid Dynamics Laboratory, 618. http://mom-ocean.org/web/docs/project/MOM5_elements.pdf[2014-11-19/2015-7-15]
|
Griffies S M, Biastoch A, Böning C, et al. 2009. Coordinated ocean-ice reference experiments (COREs). Ocean Modelling, 26(1-2):1-46
|
Huang N E, Shen Zheng, Long S R, et al. 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London Series A:Mathematical, Physical and Engineering Sciences, 454(1971):903-905
|
Kattsov V M, Walsh J E, Chapman W L, et al. 2007. Simulation and projection of Arctic freshwater budget components by the IPCC AR4 global climate models. Journal of Hydrometeorology, 8(3):571-589
|
Large W G, Yeager S G. 2009. The global climatology of an interannually varying air-sea flux data set. Climate Dynamics, 33(2-3):341-364
|
Li P X. 2009. Dominant climate factors influencing the Arctic runoff and association between the runoff and Arctic sea ice (in Chinese)[dissertation]. Qingdao:Ocean Univercity of China
|
Morison J, Kwok R, Peralta-Ferriz C, et al. 2012. Changing Arctic Ocean freshwater pathways. Nature, 481(7379):66-70
|
Peterson B J, Holmes R M, McClelland J W, et al. 2002. Increasing river discharge to the Arctic Ocean. Science, 298(5601):2171-2173
|
Rennermalm A K, Wood E F, Déry S J, et al. 2006. Sensitivity of the thermohaline circulation to Arctic Ocean runoff. Geophysical Research Letters, 33(12), doi: 10.1029/2006GL026124
|
Serreze M C, Barrett A P, Slater A G, et al. 2006. The large-scale freshwater cycle of the Arctic. Journal of Geophysical Research, 111(C11), doi: 10.1029/2005JC003424
|
Serreze M C, Barry R G. 2005. The Arctic Climate System. Cambridge:Cambridge University Press
|
Srokosz M A, Bryden H L. 2015. Observing the Atlantic meridional overturning circulation yields a decade of inevitable surprises. Science, 348(6241):1255575
|
Stouffer R J, Yin J, Gregory J M, et al. 2006. Investigating the causes of the response of the thermohaline circulation to past and future climate changes. Journal of Climate, 19(8):1365-1387
|
Sui Cuijuan, Zhang Zhanhai, Liu Jiping, et al. 2008. Variation of Arctic runoff and its association with climate factors. Haiyang Xuebao (in Chinese), 30(4):39-47
|
Survey U. 2012. Atlantic meridional overturning circulation. http://www.eoearth.org/view/article/150290[2010-3-2/2015-4-6]
|
Winton M. 2000. A reformulated three-layer sea ice model. Journal of Atmospheric and Oceanic Technology, 17(4):525-531
|
Wu Zhaohua, Huang N E. 2009. Ensemble empirical mode decomposition:a noise-assisted data analysis method. Advances in Adaptive Data Analysis, 1(1), doi: 10.1142/S1793536909000047
|
Zhang Xiangdong, He Juanxiong, Zhang Jing, et al. 2013. Enhanced poleward moisture transport and amplified northern high-latitude wetting trend. Nature Climate Change, 3(1):47-51
|
1. | Qi Shu, Qiang Wang, Chuncheng Guo, et al. Arctic Ocean simulations in the CMIP6 Ocean Model Intercomparison Project (OMIP). Geoscientific Model Development, 2023, 16(9): 2539. doi:10.5194/gmd-16-2539-2023 | |
2. | Feng Chen, Youping Chen, Nicole Davi, et al. Summer Temperature Reconstruction for the Source Area of the Northern Asian Great River Basins, Northern Mongolian Plateau Since 1190 CE and its Linkage With Inner Asian Historical Societal Changes. Frontiers in Earth Science, 2022, 10 doi:10.3389/feart.2022.904851 | |
3. | Mengdie Xie, John C. Moore, Liyun Zhao, et al. Impacts of three types of solar geoengineering on the Atlantic Meridional Overturning Circulation. Atmospheric Chemistry and Physics, 2022, 22(7): 4581. doi:10.5194/acp-22-4581-2022 | |
4. | Cheng Sun, Yusen Liu, Jing Zhang. Roles of Sea Surface Temperature Warming and Loss of Arctic Sea Ice in the Enhanced Summer Wetting Trend Over Northeastern Siberia During Recent Decades. Journal of Geophysical Research: Atmospheres, 2020, 125(18) doi:10.1029/2020JD032557 | |
5. | C. E. Hudson, J. R. Thompson. Hydrological modelling of climate change impacts on river flows in Siberia's Lena River Basin and implications for the Atlantic Meridional Overturning Circulation. Hydrology Research, 2019, 50(6): 1577. doi:10.2166/nh.2019.151 |