GAO Yuan, HE Jianfeng, CHEN Min, LIN Ling, ZHANG Fang. Factors dominating bacterioplankton abundance and production in the Nordic seas and the Chukchi Sea in summer 2012[J]. Acta Oceanologica Sinica, 2017, 36(8): 153-162. doi: 10.1007/s13131-017-1031-1
Citation: GAO Yuan, HE Jianfeng, CHEN Min, LIN Ling, ZHANG Fang. Factors dominating bacterioplankton abundance and production in the Nordic seas and the Chukchi Sea in summer 2012[J]. Acta Oceanologica Sinica, 2017, 36(8): 153-162. doi: 10.1007/s13131-017-1031-1

Factors dominating bacterioplankton abundance and production in the Nordic seas and the Chukchi Sea in summer 2012

doi: 10.1007/s13131-017-1031-1
  • Received Date: 2016-10-19
  • Abundance and production of bacterioplankton were measured in the Nordic seas and Chukchi Sea during the 5th Chinese Arctic Research Expedition in summer 2012. The results showed that average bacterial abundances ranged from 3.31×1011 cells/m3 to 2.25×1011 cells/m3, and average bacterial productions (calculated by carbon) were 0.46 mg/(m3·d) and 0.54 mg/(m3·d) in the Nordic seas and Chukchi Sea, respectively. T-test result showed that bacterial abundances were significantly different between the Nordic seas and Chukchi Sea, however, no significant difference was observed regarding bacterial productions. Based on the slope of lg bacterial biomass versus lg bacterial production, bacterial communities in the Nordic seas and Chukchi Sea were moderately dominated by bottom-up control. Both Pearson correlation analysis and multivariable linear regression indicated that temperature had significant positive correlation with bacterial abundance in the Chukchi Sea, while no correlations with productions in both areas. Meanwhile, Chl a had positive correlations with both bacterial abundance and production in these two regions. As the temperature and Chl a keep changing in the future, we suggest that both bacterial abundance and production been hanced in the Chukchi Sea but weaken in the Nordic seas, though the enhancement will not be dramatic as a result of higher pressure of predation and viral lysis.
  • loading
  • Allen J T, Brown L, Sanders R, et al. 2005. Diatom carbon export enhanced by silicate upwelling in the northeast Atlantic. Nature, 437(7059):728-732
    Anderson M R, Rivkin R B. 2001. Seasonal patterns in grazing mortality of bacterioplankton in polar oceans:a bipolar comparison. Aquat Microb Ecol, 25(2):C09011
    Arrigo K R, Perovich D K, Pickart R S, et al. 2012. Massive phytoplankton blooms under Arctic sea ice. Science, 336(6087):1408
    Arrigo K R, Perovich D K, Pickart R S, et al. 2014. Phytoplankton blooms beneath the sea ice in the Chukchi sea. Deep Sea Res Part Ⅱ:Top Stud Oceanogr, 105:1-16
    Arrigo K R, van Dijken G L. 2011. Secular trends in Arctic Ocean net primary production. J Geophys Res Oceans, 116(C9):1527-1540
    Arrigo K R, van Dijken G L. 2015. Continued increases in Arctic Ocean primary production. Prog Oceanogr, 136:60-70
    Azam F, Fenchel T, Field J G, et al. 1983. The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser, 10:257-263
    Baines S B, Pace M L. 1991. The production of dissolved organic matter by phytoplankton and its importance to bacteria:patterns across marine and freshwater systems. Limnol Oceanogr, 36(6):1078-1090
    Becagli S, Lazzara L, Marchese C, et al. 2016. Relationships linking primary production, sea ice melting, and biogenic aerosol in the Arctic. Atmos Environ, 136:1-15
    Billen G, Lancelot C, de Becker E, et al. 1988a. Modelling microbial processes (phyto-and bacterioplankton) in the Schelde estuary. Hydrobiol Bull, 22(1):43-55
    Billen G, Servais P, Fontigny A A. 1988b. Growth and mortality in bacterial population dynamics of aquatic environments. Arch Hydrobiol Beih Ergebn Limnol, 31:173-183
    Billen G, Servais P, Becquevort S. 1990. Dynamics of bacterioplankton in oligotrophic and eutrophic aquatic environments:bottom-up or top-down control?. Hydrobiologia, 207(1):37-42
    Boras J A, Sala M M, Arrieta J M, et al. 2010. Effect of ice melting on bacterial carbon fluxes channelled by viruses and protists in the Arctic Ocean. Polar Biol, 33(12):1695-1707
    Børsheim K Y. 2000. Bacterial production rates and concentrations of organic carbon at the end of the growing season in the Greenland Sea. Aquat Microb Ecol, 21(2):115-123
    Brandsma J, Martínez J M, Slagter H A, et al. 2012. Microbial biogeography of the North Sea during summer. Biogeochemistry, 113(1-3):119-136
    Carmack E, Polyakov I, Padman L, et al. 2015. Toward quantifying the increasing role of oceanic heat in sea ice loss in the new Arctic. Bull Am Meteorlol Soc, 96(12):2079-2105
    Chen Min, Huang Yipu, Guo Laodong, et al. 2002. Biological productivity and carbon cycling in the Arctic Ocean. Chin Sci Bull, 47(12):1037-1040
    Cooper L W, Frey K E, Logvinova C, et al. 2016. Variations in the proportions of melted sea ice and runoff in surface waters of the Chukchi Sea:a retrospective analysis, 1990-2012, and analysis of the implications of melted sea ice in an under-ice bloom. Deep Sea Res Part Ⅱ:Top Stud Oceanogr, 130:6-13
    Cuevas L A, Egge J K, Thingstad T F, et al. 2011. Organic carbon and mineral nutrient limitation of oxygen consumption, bacterial growth and efficiency in the Norwegian Sea. Polar Biol, 34(6):871-882
    Delille D, Gleizon F, Delille B. 2007. Spatial and temporal variation of bacterioplankton in a sub-Antarctic coastal area (Kerguelen Archipelago). J Mar Syst, 68(3-4):366-380
    Dortch Q, Packard T T. 1989. Differences in biomass structure between oligotrophic and eutrophic marine ecosystems. Deep Sea Res Part A Oceanogr Res Papers, 36(2):223-240
    Duarte C M, Agustí S, Vaqué D, et al. 2005. Experimental test of bacteria-phytoplankton coupling in the Southern Ocean. Limnol Oceanogr, 50(6):1844-1854
    Ducklow H W. 1992. Factors regulating bottom-up control of bacteria biomass in open ocean plankton communities. Ergeb Limnol, 37:207-217
    Ducklow H W. 1999. The bacterial component of the oceanic euphotic zone. FEMS Microbiol Ecol, 30(1):1-10
    Erga S R, Ssebiyonga N, Hamre B, et al. 2014. Environmental control of phytoplankton distribution and photosynthetic performance at the Jan Mayen Front in the Norwegian Sea. J Mar Syst, 130:193-205
    Fujiwara A, Hirawake T, Suzuki K, et al. 2014. Timing of sea ice retreat can alter phytoplankton community structure in the western Arctic Ocean. Biogeosciences, 11(7):1705-1716
    Gong D L, Pickart R S. 2016. Early summer water mass transformation in the eastern Chukchi Sea. Deep Sea Res Part Ⅱ:Top Stud Oceanogr, 130:43-55
    Gonzalez J M, Sherr E B, Sherr B F. 1990. Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl Environ Microb, 56(3):583-589
    Grasshoff K, Ehrhardt M, Kremling K. 1999. Methods of Seawater Analysis,:600
    Hansen B, Østerhus S. 2000. North Atlantic-Nordic Seas exchanges. Prog Oceanogr, 45(2):109-208
    Hardoon D R, Szedmak S R, Shawe-Taylor J R. 2004. Canonical correlation analysis:an overview with application to learning methods. Neural Comput, 16(12):2639-2664
    Howard-Jones M H, Ballard V D, Allen A E, et al. 2002. Distribution of bacterial biomass and activity in the marginal ice zone of the central Barents Sea during summer. J Mar Syst, 38(1-2):77-91
    Jackson J M, Carmack E C, Mclaughlin F A, et al. 2010. Identification, characterization, and change of the near-surface temperature maximum in the Canada Basin, 1993-2008. J Geophys Res, 115(C5):C05021
    Jeffries M O, Richter-Menge J, Overland J E. 2014. Arctic Report Card 2014. http://www.arctic.noaa.gov/Report-Card/Report-Card-2016[2014-12-17/2015-4-1]
    Ji R B, Jin M B, Varpe Ø. 2013. Sea ice phenology and timing of primary production pulses in the Arctic Ocean. Glob Change Biol, 19(3):734-741
    Jiao Nianzhi, Chen Feng, Zeng Yonghui, et al. 2011. Microbial carbon pump in the ocean-from microbial ecological process to carbon cycle mechanism. J Xiamen Univ (Nat Sci) (in Chinese), 50(2):387-401
    Jiao Nianzhi, Herndl G J, Hansell D A, et al. 2010. Microbial production of recalcitrant dissolved organic matter:long-term carbon storage in the global ocean. Nat Rev Microbiol, 8(8):593-599
    Kirchman D L. 1994. The uptake of inorganic nutrients by heterotrophic bacteria. Microb Ecol, 28(2):255-271
    Kirchman D L, Hill V, Cottrell M T, et al. 2009a. Standing stocks, production, and respiration of phyto-plankton and heterotrophic bacteria in the western Arctic Ocean. Deep Sea Res Part Ⅱ:Top Stud Oceanogr, 56(17):1237-1248
    Kirchman D L, Morán X A, Ducklow H. 2009b. Microbial growth in the polar oceans-role of temperature and potential impact of climate change. Nat Rev Microbiol, 7(6):451-459
    Knap A, Michaels A, Close A, et al. 1994. Protocols for the Joint Global Ocean Flux Study (JGOFS) Core Measurements. Paris:UNESCO
    Kritzberg E S, Arrieta J M, Duarte C M. 2010. Temperature and phosphorus regulating carbon flux through bacteria in a coastal marine system. Aquat Microb Ecol, 58(2):141-151
    Kuosa H, Kaartokallio H. 2006. Experimental evidence on nutrient and substrate limitation of Baltic Sea sea-ice algae and bacteria. Hydrobiologia, 554(1):1-10
    Lawrence J, Popova E, Yool A, et al. 2015. On the vertical phytoplankton response to an ice-free Arctic Ocean. J Geophys Res Oceans, 120(12):8571-8582
    Lin Ling, He Jianfeng, Zhao Yunlong, et al. 2012. Flow cytometry investigation of picoplankton across latitudes and along the circum Antarctic Ocean. Acta Oceanol Sinica, 31(1):134-142
    Luchin V, Panteleev G. 2014. Thermal regimes in the Chukchi Sea from 1941 to 2008. Deep Sea Res Part Ⅱ:Top Stud Oceanogr, 109:14-26
    Mathis J T, Pickart R S, Hansell D A, et al. 2007. Eddy transport of organic carbon and nutrients from the Chukchi Shelf:impact on the upper halocline of the western Arctic Ocean. J Geophys Res Oceans, 112(C5):C05011
    McLaughlin F A, Carmack E C. 2010. Deepening of the nutricline and chlorophyll maximum in the Canada Basin interior, 2003-2009. Geophys Res Lett, 37(24):L24602
    McManus G B, Fuhrman J A. 1988. Control of marine bacterioplankton populations:measurement and significance of grazing. Hydrobiologia, 159(1):51-62
    Middelboe M, Lundsgaard C. 2003. Microbial activity in the Greenland Sea:role of DOC lability, mineral nutrients and temperature. Aquat Microb Ecol, 32(2):151-163
    Nguyen D, Maranger R, Tremblay J E, et al. 2012. Respiration and bacterial carbon dynamics in the Amundsen Gulf, western Canadian Arctic. J Geophys Res Oceans, 117(C9):C00G16
    Nikrad M P, Cottrell M T, Kirchman D L. 2012. Abundance and single-cell activity of heterotrophic bacterial groups in the western Arctic Ocean in summer and winter. Appl Environ Microbiol, 78(7):2402-2409
    Norrman B, Zwelfel U L, Hopkinson C S Jr, et al. 1995. Production and utilization of dissolved organic carbon during an experimental diatom bloom. Limnol Oceanogr, 40(5):898-907
    Ortega-Retuerta E, Fichot C G, Arrigo K R, et al. 2014. Response of marine bacterioplankton to a massive under-ice phytoplankton bloom in the Chukchi Sea (Western Arctic Ocean). Deep Sea Res Part Ⅱ:Top Stud Oceanogr, 105:74-84
    Ortega-Retuerta E, Jeffrey W H, Babin M, et al. 2012. Carbon fluxes in the Canadian Arctic:patterns and drivers of bacterial abundance, production and respiration on the Beaufort Sea margin. Biogeosciences, 9(9):3679-3692
    Orvik K A, Skagseth Ø. 2003. The impact of the wind stress curl in the North Atlantic on the Atlantic inflow to the Norwegian Sea toward the Arctic. Geophys Res Lett, 30(17):1884
    Pakulski J D, Baldwin A, Dean A L, et al. 2007. Responses of heterotrophic bacteria to solar irradiance in the eastern Pacific Ocean. Aquat Microb Ecol, 47(2):153-162
    Pomeroy L R, Deibel D. 1986. Temperature regulation of bacterial activity during the spring bloom in newfoundland coastal waters. Science, 233(4761):359-361
    Pomeroy L R, Macko S A, Ostrom P H, et al. 1990. The microbial food web in Arctic seawater concentration of dissolved free amino acids and bacterial abundance and activity in the Arctic Ocean and in Resolute Passage. Mar Ecol Prog Ser, 61:31-40
    Pomeroy L R, Wiebe W J, Deibel D, et al. 1991. Bacterial responses to temperature and substrate concentration during the Newfoundland spring bloom. Mar Ecol Prog Ser, 75:143-159
    Pomeroy L R, Wiebe W J. 2001. Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aquat Microb Ecol, 23(2):187-204
    Pomeroy L R, Williams P J L, Azam F, et al. 2007. The microbial loop. Oceanography, 20(2):28-33
    Rivkin R B, Anderson M R, Lajzerowicz C. 1996. Microbial processes in cold oceans:I. Relationship between temperature and bacterial growth rate. Aqua Microbial Ecol, 10(3):243-254
    Robinson C, Williams P J L. 1993. Temperature and Antarctic plankton community respiration. J Plankton Res, 15(9):1035-1051
    Sala M M, Arrieta J M, Boras J A, et al. 2010. The impact of ice melting on bacterioplankton in the Arctic Ocean. Polar Biol, 33(12):1683-1694
    Sherr B F, Sherr E B. 2003. Community respiration/production and bacterial activity in the upper water column of the central Arctic Ocean. Deep Sea Res Part I:Oceanogra Res Papers, 50(4):529-542
    Šolić M, Krstulović N, Vilibić I, et al. 2009. Variability in the bottom-up and top-down controls of bacteria on trophic and temporal scales in the middle Adriatic Sea. Aquat Microb Ecol, 58(1):15-29
    Steiner N S, Sou T, Deal C, et al. 2015. The future of the subsurface chlorophyll-a Maximum in the Canada Basin-a model intercomparison. J Geophys Res Oceans, 121(1):387-409
    Sturluson M, Nielsen T G, Wassmann P. 2008. Bacterial abundance, biomass and production during spring blooms in the northern Barents Sea. Deep Sea Res Part Ⅱ:Top Stud Oceanogr, 55(20-21):2186-2198
    Swift J, Aagaard K. 1981. Seasonal transitions and water mass formation in the Iceland and Greenland Seas. Deep Sea Res Part A:Oceanogr Res Pap, 28(10):1107-1129
    Uchimiya M, Fukuda H, Nishino S, et al. 2011. Does freshening of surface water enhance heterotrophic prokaryote production in the western Arctic? Empirical evidence from the Canada Basin during September 2009. J Oceanogr, 67(5):589-599
    Vaqué D, Guadayol Ò, Peters F, et al. 2009. Differential response of grazing and bacterial heterotrophic production to experimental warming in Antarctic waters. Aquat Microb Ecol, 54(1):101-112
    von Parsons T R, Maita Y, Lalli C M. 1984. A manual of chemical and biological methods for seawater analysis,:173
    Wang Deli, Henrichs S M, Guo Laodong. 2006. Distributions of nutrients, dissolved organic carbon and carbohydrates in the western Arctic Ocean. Cont Shelf Res, 26(14):1654-1667
    Weiss S, van Treuren W, Lozupone C, et al. 2016. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J, 10(7):1669-1691
    Wilkins D, Yau S, Williams T J, et al. 2013. Key microbial drivers in Antarctic aquatic environments. FEMS Microbiol Rev, 37(3):303-335
    Yang E J, Ha H K, Kang S H. 2015. Microzooplankton community structure and grazing impact on major phytoplankton in the Chukchi sea and the western Canada basin, Arctic ocean. Deep Sea Res Part Ⅱ:Top Stud Oceanogr, 120:91-102
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (843) PDF downloads(933) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return