Citation: | ZHANG Ye, LI Chaolun, YANG Guang, WANG Yanqing, TAO Zhencheng, ZHANG Yongshan, WANG Aijun. Ontogenetic diet shift in Antarctic krill (Euphausia superba) in the Prydz Bay: a stable isotope analysis[J]. Acta Oceanologica Sinica, 2017, 36(12): 67-78. doi: 10.1007/s13131-017-1049-4 |
Alexander S A, Hobson K A, Gratto-Trevor C L. 1996. Conventional and isotopic determinations of shorebird diets at an inland stopover: the importance of invertebrates and Potamogeton pectinatus tubers. Canadian Journal of Zoology, 74(6): 1057-1068
|
Atkinson A, Meyer B, Stubing D. 2002. Feeding and energy budgets of Antarctic krill Euphausia superba at the onset of winter: Ⅱ. Juveniles and adults. Limnology and Oceanography, 47(4): 953-966
|
Atkinson A, Siegel V, Pakhomov E. 2004. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature, 432(7013): 100-103
|
Atkinson A, Snÿder R. 1997. Krill-copepod interactions at South Georgia, Antarctica: I. omnivory by Euphausia superba. Marine Ecology Progress Series, 160: 63-76
|
Atkinson A, Ward P, Hill A. 1999. Krill-copepod interactions at South Georgia, Antarctica: Ⅱ. Euphausia superba as a major control on copepod abundance. Marine Ecology Progress Series, 176: 63-79
|
Båmstedt U, Gifford D J, Irigoien X, et al. 2000. Feeding. In: Harris R, Wiebe P, Lenz J, et al., eds. ICES Zooplankton Methodology Manual. London: Academic Press
|
Benstead J P, March J G, Fry B. 2006. Testing IsoSource: stable isotope analysis of a tropical fishery with diverse organic matter sources. Ecology, 87(2): 326-333
|
Boyd C M, Heyraud M, Boyd C N. 1984. Feeding of the Antarctic krill Euphausia superba. Journal of Crustacean Biology, 4(S1): 123-141
|
Brodie C R, Casford J S L, Lloyd J M. 2011. Evidence for bias in C/N, δ13C and δ15N values of bulk organic matter, and on environmental interpretation, from a lake sedimentary sequence by pre-analysis acid treatment methods. Quaternary Science Reviews, 30(21-22): 3076-3087
|
Cabana G, Rasmussen J B. 1996. Comparison of aquatic food chains using nitrogen isotopes. Proceedings of the National Academy of Sciences of the United States of America, 93(20): 10844-10847
|
Cherel Y, Ducatez S, Fontaine C. 2008. Stable isotopes reveal the trophic position and mesopelagic fish diet of female southern elephant seals breeding on the Kerguelen Islands. Marine Ecology Progress Series, 370: 239-247
|
Daly K, Macaulay M C. 1991. Influence of physical and biological mesoscale dynamics on the seasonal distribution and behavior of Euphausia superba in the Antarctic marginal ice zone. Marine Ecology Progress Series, 79(1): 37-66
|
Daly K L. 1990. Overwintering development, growth, and feeding of larval Euphausia superba in the Antarctic marginal ice zone. Limnology and Oceanography, 35(7): 1564-1576
|
Daly K L. 2004. Overwintering growth and development of larval Euphausia superba: an interannual comparison under varying environmental conditions west of the Antarctic Peninsula. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 51(17-19): 2139-2168
|
DeNiro M J, Epstein S. 1977. Mechanism of carbon isotope fractionation associated with lipid synthesis. Science, 197(4300): 261-263
|
Everson I. 2000. Krill: Biology, Ecology and Fisheries. Oxford Malden, MA: Blackwell Science, 1-372
|
Fischer G. 1991. Stable carbon isotope ratios of plankton carbon and sinking organic matter from the Atlantic sector of the Southern Ocean. Marine Chemistry, 35(1-4): 581-596
|
Gurney L J, Froneman P W, Pakhomov E A. 2001. Trophic positions of three euphausiid species from the Prince Edward Islands (Southern Ocean): implications for the pelagic food web structure. Marine Ecology Progress Series, 217: 167-174
|
Haberman K L, Quetin L B, Ross R M. 2003a. Diet of the Antarctic krill (Euphausia superba Dana): I. Comparisons of grazing on Phaeocystis antarctica (Karsten) and Thalassiosira antarctica (Comber). Journal of Experimental Marine Biology and Ecology, 283(1-2): 79-95
|
Haberman K L, Ross R M, Quetin L B. 2003b. Diet of the Antarctic krill (Euphausia superba Dana): Ⅱ. Selective grazing in mixed phytoplankton assemblages. Journal of Experimental Marine Biology and Ecology, 283(1-2): 97-113
|
Hansson L A, Tranvik L J. 2003. Food webs in sub-Antarctic lakes: a stable isotope approach. Polar Biology, 26(12): 783-788
|
Hellmann C, Wissel B, Winkelmann C. 2013. Omnivores as seasonally important predators in a stream food web. Freshwater Science, 32(2): 548-562
|
Hodum P J, Hobson K A. 2000. Trophic relationships among Antarctic fulmarine petrels: insights into dietary overlap and chick provisioning strategies inferred from stable-isotope (δ15N and δ13C) analyses. Marine Ecology Progress Series, 198: 273-281
|
Hopkins T L, Torres J J. 1989. Midwater food web in the vicinity of a marginal ice zone in the western Weddell Sea. Deep Sea Research Part I. Oceanographic Research Papers, 36(4): 543-560
|
Hosie G W. 1991. Distribution and abundance of euphausiid larvae in the Prydz Bay region, Antarctica. Antarctic Science, 3(2): 167-180
|
Hosie G W, Cochran T G. 1994. Mesoscale distribution patterns of macrozooplankton communities in Prydz Bay, Antarctica-January to February 1991. Marine Ecology Progress Series, 106(1-2): 21-39
|
Hosie G W, Ikeda T, Stolp M. 1988. Distribution, abundance and population structure of the Antarctic krill (Euphausia superba Dana) in the Prydz Bay region, Antarctica. Polar Biology, 8(3): 213-224
|
Kiljunen M, Grey J, Sinisalo T. 2006. A revised model for lipid-normalizing delta δ13C values from aquatic organisms, with implications for isotope mixing models. Journal of Applied Ecology, 43(6): 1213-1222
|
Kopczyńska E E, Goeyens L, Semeneh M. 1995. Phytoplankton composition and cell carbon distribution in Prydz Bay, Antarctica: relation to organic particulate matter and its δ13C values. Journal of Plankton Research, 17(4): 685-707
|
Legendre L, Ackley S F, Dieckmann G S. 1992. Ecology of sea ice biota. Polar Biology, 12(3-4): 429-444
|
Lesage V, Hammill M O, Kovacs K M. 2001. Marine mammals and the community structure of the Estuary and Gulf of St Lawrence, Canada: evidence from stable isotope analysis. Marine Ecology Progress Series, 210: 203-221
|
Maciejewska K. 1993. Feeding of antarctic krill Euphausia superba in Weddell sea. Polish Polar Research, 14(1): 43-54
|
McClatchie S, Boyd C M. 1983. Morphological study of sieve efficiencies and mandibular surfaces in the Antarctic krill, Euphausia superba. Canadian Journal of Fisheries and Aquatic Sciences, 40(7): 955-967
|
McConnaughey T, McRoy C P. 1979. Food-web structure and the fractionation of carbon isotopes in the bering sea. Marine Biology, 53(3): 257-262
|
Meyer B, Atkinson A, Stöbing D. 2002. Feeding and energy budgets of Antarctic krill Euphausia superba at the onset of winter: I. Furcilia Ⅲ larvae. Limnology and Oceanography, 47(4): 943-952
|
Minagawa M, Wada E. 1984. Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochimica et Cosmochimica Acta, 48(5): 1135-1140
|
Miquel J C. 1991. Distribution and abundance of post-larval krill (Euphausia superba Dana) near Prydz Bay in summer with reference to environmental conditions. Antarctic Science, 3(3): 279-292
|
Neill C, Cornwell J C. 1992. Stable carbon, nitrogen, and sulfur isotopes in a prairie marsh food web. Wetlands, 12(3): 217-224
|
Nicol S. 2006. Krill, currents, and sea ice: Euphausia superba and its changing environment. BioScience, 56(2): 111-120
|
Nordhausen W. 1994. Winter abundance and distritubion of Euphausia superba, E. crystallorophias, and Thysanoessa macrura in Gerlache Strait amd Crystal Sound, Antarctica. Marine Ecology Progress Series, 109(2-3): 131-142
|
Norkko A, Thrush S T, Cummings V J. 2007. Trophic structure of coastal Antarctic food webs associated with changes in sea ice and food supply. Ecology, 88(11): 2810-2820
|
Ogle K, Tucker C, Cable J M. 2014. Beyond simple linear mixing models: process-based isotope partitioning of ecological processes. Ecological Applications, 24(1): 181-195
|
Park J I, Kang C K, Suh H L. 2011. Ontogenetic diet shift in the euphausiid Euphausia pacifica quantified using stable isotope analysis. Marine Ecology Progress Series, 429: 103-109
|
Perissinotto R, Gurney L, Pakhomov E A. 2000. Contribution of heterotrophic material to diet and energy budget of Antarctic krill, Euphausia superba. Marine Biology, 136(1): 129-135
|
Phillips D L, Gregg J W. 2003. Source partitioning using stable isotopes: coping with too many sources. Oecologia, 136(2): 261-269
|
Phillips D L, Newsome S D, Gregg J W. 2005. Combining sources in stable isotope mixing models: alternative methods. Oecologia, 144(4): 520-527
|
Polito M J, Reiss C S, Trivelpiece W Z. 2013. Stable isotopes identify an ontogenetic niche expansion in Antarctic krill (Euphausia superba) from the South Shetland Islands, Antarctica. Marine Biology, 160(6): 1311-1323
|
Ponomareva L A. 1954. Euphausiids of the Sea of Japan feeding on copepods. Dokl Akad Nauk SSSR, 98: 153-154
|
Post D M. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology, 83(3): 703-718
|
Price H J, Boyd K R, Boyd C M. 1988. Omnivorous feeding behavior of the Antarctic krill Euphausia superba. Marine Biology, 97(1): 67-77
|
Pu Shuzhen, Dong Zhaoqian. 2003. Progress in physical oceanographic studies of Prydz Bay and its adjacent oceanic area. Chinese Journal of Polar Research (in Chinese), 15(1): 53-64
|
Quetin L B, Ross R M. 1991. Behavioral and physiological characteristics of the Antarctic krill, Euphausia superba. American Zoologist, 31(1): 49-63
|
Quetin L B, Ross R M. 2009. Life under Antarctic pack ice: a krill perspective. In: Krupnik I, Lang M A, Miller S E, eds. Smithsonian at the Poles: Contributions to International Polar Year Science. Washington, DC: Smithsonian Institution Scholarly Press, doi: 10.5479/si.097884601X.21
|
Rau G H, Hopkins T L, Torres J J. 1991a. 15N/14N and 13C/12C in Weddell Sea invertebrates: implications for feeding diversity. Marine Ecology Progress Series, 77(1): 1-6
|
Rau G H, Sullivan C W, Gordon L I. 1991b. δ13C and δ15N variations in Weddell Sea particulate organic matter. Marine Chemistry, 35(1-4): 355-369
|
Rau G H, Takahashi T, Des Marais D J. 1991c. Particulate organic matter δ13C variations across the Drake Passage. Journal of Geophysical Research, 96(C8): 15131-15135
|
Ross R M, Quetin L B, Newberger T. 2004. Growth and behavior of larval krill (Euphausia superba) under the ice in late winter 2001 west of the Antarctic Peninsula. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 51(17-19): 2169-2184
|
Schmidt K, Atkinson A, Petzke K J. 2006. Protozoans as a food source for Antarctic krill, Euphausia superba: complementary insights from stomach content, fatty acids, and stable isotopes. Limnology and Oceanography, 51(5): 2409-2427
|
Schmidt K, Atkinson A, Pond D W. 2014. Feeding and overwintering of Antarctic krill across its major habitats: the role of sea ice cover, water depth, and phytoplankton abundance. Limnology and Oceanography, 59(1): 17-36
|
Schmidt K, Atkinson A, Steigenberger S. 2011. Seabed foraging by Antarctic krill: implications for stock assessment, bentho-pelagic coupling, and the vertical transfer of iron. Limnology and Oceanography, 56(4): 1411-1428
|
Schmidt K, Atkinson A, Stübing D. 2003. Trophic relationships among Southern Ocean copepods and krill: some uses and limitations of a stable isotope approach. Limnology and Oceanography, 48(1): 277-289
|
Siegel V, Bergström B, Strömberg J O. 1990. Distribution, size frequencies and maturity stages of krill, Euphausia superba, in relation to sea-ice in the northern Weddell Sea. Polar Biology, 10(7): 549-557
|
Smith N R, Dong Zhaoqian, Kerry K R. 1984. Water masses and circulation in the region of Prydz Bay, Antarctica. Deep Sea Research Part I. Oceanographic Research Papers, 31(9): 1121-1147
|
Søreide J E, Hop H, Carroll M L. 2006. Seasonal food web structures and sympagic-pelagic coupling in the European Arctic revealed by stable isotopes and a two-source food web model. Progress in Oceanography, 71(1): 59-87
|
Stowasser G, Atkinson A, McGill R A R. 2012. Food web dynamics in the Scotia Sea in summer: a stable isotope study. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 59-60: 208-221
|
Suh H L, Choi S D. 1998. Comparative morphology of the feeding basket of five species of Euphausia (Crustacea, Euphausiacea) in the western North Pacific, with some ecological considerations. Hydrobiologia, 385(1-3): 107-112
|
Suh H L, Nemoto T. 1987. Comparative morphology of filtering structure of five species of Euphausia (Euphausiacea, Crustacea) from the Antarctic Ocean. Proceedings of the NIPR Symposium on Polar Biology, 1: 72-83
|
Taki K, Yabuki T, Noiri Y. 2008. Horizontal and vertical distribution and demography of euphausiids in the Ross Sea and its adjacent waters in 2004/2005. Polar Biology, 31(11): 1343-1356
|
Thomas P G, Green K. 1988. Distribution of Euphausia crystallorophias within Prydz Bay and its importance to the inshore marine ecosystem. Polar Biology, 8(5): 327-331
|
Tierney M, Southwe C, Emmerson L M. 2008. Evaluating and using stable-isotope analysis to infer diet composition and foraging ecology of Adélie penguins Pygoscelis adeliae. Marine Ecology Progress Series, 355: 297-307
|
Vander Zanden M J, Rasmussen J B. 1999. Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecology, 80(4): 1395-1404
|
Wada E, Terazaki M, Kabaya Y. 1987. 15N and 13C abundances in the Antarctic ocean with emphasis on biogeochemical structure of the food web. Deep Sea Research Part I. Oceanographic Research Papers, 34(5-6): 829-841
|
Yin Xijie, Li Yunhai, Qiao Lei. 2014. Distribution of particulate organic carbon (POC) and δ13Cpoc in surface waters in summer in Prydz Bay, Antarctica. Chinese Journal of Polar Research (in Chinese), 26(1): 159-166
|