Citation: | WANG Jintao, CHEN Xinjun, Kevin W. Staples, CHEN Yong. A stock assessment for Illex argentinus in Southwest Atlantic using an environmentally dependent surplus production model[J]. Acta Oceanologica Sinica, 2018, 37(2): 94-101. doi: 10.1007/s13131-017-1131-y |
Adkison M D, Peterman R M. 1996. Results of Bayesian methods depend on details of implementation: an example of estimating salmon escapement goals. Fisheries Research, 25(2): 155-170
|
Agnew D J, Beddington J R, Hill S L. 2002. The potential use of environmental information to manage squid stocks. Canadian Journal of Fisheries and Aquatic Sciences, 59(12): 1851-1857
|
Anderson C I H, Rodhouse P G. 2001. Life cycles, oceanography and variability: ommastrephid squid in variable oceanographic environments. Fisheries Research, 54(1): 133-143
|
Arkhipkin A. 1993. Age, growth, stock structure and migratory rate of pre-spawning short-finned squid Illex argentinus based on statolith ageing investigations. Fisheries Research, 16(4): 313-338
|
Arkhipkin A I. 2000. Intrapopulation structure of winter-spawned Argentine shortfin squid, Illex argentinus (Cephalopoda, Ommastrephidae), during its feeding period over the Patagonian Shelf. Fishery Bulletin, 98(1): 1-13
|
Arkhipkin A, Laptikhovsky V. 1994. Seasonal and interannual variability in growth and maturation of winter-spawning Illex argentinus (Cephalopoda, Ommastrephidae) in the Southwest Atlantic. Aquatic Living Resources, 7(4): 221-232
|
Basson M, Beddington J R, Crombie J A, et al. 1996. Assessment and management techniques for migratory annual squid stocks: the Illex argentinus fishery in the Southwest Atlantic as an example. Fisheries Research, 28(1): 3-27
|
Bazzino G, Quiñones R A, Norbis W. 2005. Environmental associations of shortfin squid Illex argentinus (Cephalopoda: Ommastrephidae) in the Northern Patagonian Shelf. Fisheries Research, 76(3): 401-416
|
Berger J O, Moreno E, Pericchi L R, et al. 1994. An overview of robust Bayesian analysis. Test, 3(1): 5-124
|
Bigelow K A, Boggs C H, He X. 1999. Environmental effects on swordfish and blue shark catch rates in the US North Pacific longline fishery. Fisheries Oceanography, 8(3): 178-198
|
Boyle P R. 1987. Cephalopod Life Cycles, Vol. Ⅱ, Comparative Reviews. London: Academic Press
|
Brunetti N E, Ivanovic M, Rossi G, et al. 1998. Fishery biology and life history of Illex argentinus. In: Okutani T, ed. Contributed Papers to International Symposium on Large Pelagic Squids. Tokyo: Japan Marine Fishery Resources Research Center, 217-231
|
Cao Jie. 2010. Stock assessment and risk analysis of management strategies for neon flying squid (Ommastrephes bartramii) in the Northwest Pacific Ocean (in Chinese) [dissertation]. Shanghai: Shanghai Ocean University
|
Chen Yong, Breen P A, Andrew N L. 2000. Impacts of outliers and mis-specification of priors on Bayesian fisheries-stock assessment. Canadian Journal of Fisheries and Aquatic Sciences, 57(11): 2293-2305
|
Chen Xinjun, Chen Yong, Tian Siquan, et al. 2008. An assessment of the west winter-spring cohort of neon flying squid (Ommastrephes bartramii) in the Northwest Pacific Ocean. Fisheries Research, 92(2-3): 221-230
|
Chen C S, Chiu T S. 2009. Standardising the CPUE for the Illex argentinus fishery in the Southwest Atlantic. Fisheries Science, 75(2): 265-272
|
Haimovici M, Brunetti N E, Rodhouse P G, et al. 1998. Illex argentinus. In: Rodhouse P G, Dawe E G, O'Dor P K, eds. Squid Recruitment Dynamics: The Genus Illex as a Model, The Commercial Illex Species and Influences on Variability (FAO Fisheries Technical Paper 376). Rome: FAO, 27-58
|
Haimovici M, Santos R A D, Bainy M C R S, et al. 2014. Abundance, distribution and population dynamics of the short fin squid Illex argentinus in Southwestern and Southern Brazil. Fisheries Research, 152: 1-12
|
Hatanaka H. 1998. Feeding migration of short-finned squid Illex argentinus in the waters off Argentina. Nippon Suisan Gakkaishi, 54(8): 1343-1349
|
Hilborn R, Pikitch E K, Francis R C. 1993. Current trends in including risk and uncertainty in stock assessment and harvest decisions. Canadian Journal of Fisheries and Aquatic Sciences, 50(4): 874-880
|
Hilborn R, Walters C J. 1999. Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty. London: Chapman & Hall.
|
Ichii T, Mahapatra K, Okamura H, et al. 2006. Stock assessment of the autumn cohort of neon flying squid (Ommastrephes bartramii) in the North Pacific based on past large-scale high seas driftnet fishery data. Fisheries Research, 78(2-3): 286-297
|
Kinas P G. 1996. Bayesian fishery stock assessment and decision making using adaptive importance sampling. Canadian Journal of Fisheries and Aquatic Sciences, 53(2): 414-423
|
Li Gang, Chen Xinjun, Guan Wenjiang, et al. 2011. Stock Assessment and Management for Mackerel in East Yellow Sea (in Chinese). Beijing: Science Press, 4-128
|
Lu Huajie, Chen Xinjun, Cao Jie, et al. 2013a. CPUE standardization of Illex argentinus for Chinese Mainland squid-jigging fishery in the southwest Atlantic Ocean. Journal of Fisheries of China (in Chinese), 37(6): 951-960
|
Lu Huajie, Chen Xinjun, Li Gang, et al. 2013b. Stock assessment and management for Illex argentinus in Southwest Atlantic Ocean based on Bayesian Schaefer model. Chinese Journal of Applied Ecology (in Chinese), 24(7): 2007-2014
|
Maunder M N, Punt A E. 2004. Standardizing catch and effort data: a review of recent approaches. Fisheries Research, 70(2-3): 141-159
|
McAllister M K, Kirkwood G P. 1998. Bayesian stock assessment: a review and example application using the logistic model. ICES Journal of Marine Science, 55(6): 1031-1060
|
McAllister M K, Pikitch E K, Punt A E, et al. 1994. A Bayesian approach to stock assessment and harvest decisions using the sampling/importance resampling algorithm. Canadian Journal of Fisheries and Aquatic Sciences, 51(12): 2673-2687
|
Osako M, Murata M. 1983. Stock assessment of cephalopod resources in the northwestern Pacific. In: Caddy J F, ed. Advances in Assessment of World Cephalopod Resources. FAO Fisheries Technical Paper. 55–144
|
Polacheck T, Hilborn R, Punt A E. 1993. Fitting surplus production models: comparing methods and measuring uncertainty. Canadian Journal of Fisheries and Aquatic Sciences, 50(12): 2597-2607
|
Prager M H. 1994. A suite of extensions to a non-equilibrium surplus-production model. Fishery Bulletin, 92(2): 374-389
|
Roberts M J. 1998. The influence of the environment on chokka squid Loligo vulgaris reynaudii spawning aggregations: steps towards a quantified model. South African Journal of Marine Science, 20(1): 267-284
|
Rodhouse P G. 2001. Managing and forecasting squid fisheries in variable environments. Fisheries Research, 54(1): 3-8
|
Rosas-Luis R, Sánchez P, Portela J M, et al. 2014. Feeding habits and trophic interactions of Doryteuthis gahi, Illex argentinus and Onykia ingens in the marine ecosystem off the Patagonian Shelf. Fisheries Research, 152: 37-44
|
Sakurai Y, Kiyofuji H, Saitoh S, et al. 2000. Changes in inferred spawning areas of Todarodes pacificus (Cephalopoda: Ommastrephidae) due to changing environmental conditions. ICES Journal of Marine Science, 57(1): 24-30
|
Wadley V A, Lu C C. 1983. Distribution of mesopelagic cephalopods around a warm-core ring in the East Australian Current. Memoirs of the National Museum of Victoria, 44(1): 197-198
|
Waluda C M, Griffiths H J, Rodhouse P G. 2008. Remotely sensed spatial dynamics of the Illex argentinus fishery, Southwest Atlantic. Fisheries Research, 91(2-3): 196-202
|
Waluda C M, Rodhouse P G, Podestá G, et al. 2001. Surface oceanography of the inferred hatching grounds of Illex argentinus (Cephalopoda: Ommastrephidae) and influences on recruitment variability. Marine Biology, 139(4): 671-679
|
Waluda C M, Trathan P N, Rodhouse P G. 1999. Influence of oceanographic variability on recruitment in the Illex argentinus (Cephalopoda: Ommastrephidae) fishery in the South Atlantic. Marine Ecology Progress Series, 183: 159-167
|
Wang Shengping, Maunder M N, Aires-da-Silva A. 2014. Selectivity's distortion of the production function and its influence on management advice from surplus production models. Fisheries Research, 158: 181-193
|
Wang Jintao, Yu Wei, Chen Xinjun, et al. 2016. Stock assessment for the western winter-spring cohort of neon flying squid (Ommastrephes bartramii) using environmentally dependent surplus production models. Scientia Marina, 80(1): 69-78
|
Yatsu A, Watanabe T, Mori J, et al. 2000. Interannual variability in stock abundance of the neon flying squid, Ommastrephes bartramii, in the North Pacific Ocean during 1979-1998: impact of driftnet fishing and oceanographic conditions. Fisheries Oceanography, 9(2): 163-170
|
Zhan Bingyi. 1995. Fishery Stock Assessment (in Chinese). Beijing: China Agriculture Press, 170-180
|