GUO Jingsong, ZHANG Zhixin, XIA Changshui, GUO Binghuo. Seasonal characteristics and forcing mechanisms of the surface Kuroshio branch intrusion into the South China Sea[J]. Acta Oceanologica Sinica, 2019, 38(1): 13-21. doi: 10.1007/s13131-017-1132-x
Citation: GUO Jingsong, ZHANG Zhixin, XIA Changshui, GUO Binghuo. Seasonal characteristics and forcing mechanisms of the surface Kuroshio branch intrusion into the South China Sea[J]. Acta Oceanologica Sinica, 2019, 38(1): 13-21. doi: 10.1007/s13131-017-1132-x

Seasonal characteristics and forcing mechanisms of the surface Kuroshio branch intrusion into the South China Sea

doi: 10.1007/s13131-017-1132-x
  • Received Date: 2017-10-10
  • Using observational data of Argos satellite-tracked drifters from 1988 to 2012, we analyzed seasonal characteristics of the surface Kuroshio branch (KB) intrusion into the South China Sea (SCS). The analysis results are as follows. The surface KB originates from the southern Balintang Channel (BLTC) and Babuyan Channel (BBYC). It begins in late September, reaches peak strength in November-December, and declines at the end of March. The mean speed of drifters along the KB path during their traverse of the Luzon Strait (LS) was 43% faster than during the two days before entering the LS for the flow originating from the southern BLTC, but there was a 24% increase in speed for the flow from the BBYC. The observations show that in winter, monthly-mean sea-level anomalies (SLAs) were positive southwest of Taiwan Island and extended to the northern LS. The SLAs were negative northwest of Luzon Island and extended to the southern LS, which acted like a pump, forcing a part of Kuroshio water westward into the SCS. The condition under which the KB forms was solved by a set of simplified motion equations. The results indicate that whether the KB can form depends upon the sea-level gradient at the central LS and region to the west, as well as the location, speed and direction of Kuroshio surface water when it enters the LS.
  • loading
  • Caruso M J, Gawarkiewicz G G, Beardsley R C. 2006. Interannual variability of the Kuroshio intrusion in the South China Sea. Journal of Oceanography, 62(4):559-575, doi: 10.1007/s10872-006-0076-0
    Centurioni L R, Niiler P P, Lee D K. 2004. Observations of inflow of Philippine Sea surface water into the South China Sea through the Luzon Strait. Journal of Physical Oceanography, 34(1):113-121, doi: 10.1175/1520-0485(2004)034<0113:OOIOPS>2.0.CO;2
    Centurioni L R, Niiler P N, Lee D K. 2009. Near-surface circulation in the South China Sea during the winter monsoon. Geophysical Research Letters, 36(6):L06605, doi: 10.1029/2008GL037076
    Fang Guohong, Wei Zexun, Byung-Ho C, et al. 2003. Interbasin freshwater, heat and salt transport through the boundaries of the East and South China Seas from a variable-grid global ocean circulation model. Science in China Series D:Earth Sciences, 46(2):149-161, doi: 10.1360/03yd9014
    Farris A, Wimbush M. 1996. Wind-induced Kuroshio intrusion into the South China Sea. Journal of Oceanography, 52(6):771-784, doi: 10.1007/BF02239465
    Gilson J, Roemmich D. 2002. Mean and temporal variability in Kuroshio geostrophic transport south of Taiwan (1993-2001). Journal of Oceanography, 58(1):183-195, doi: 10.1023/A:1015841120927
    Guan Bingxian. 1978. The topographic effects of Taiwan Island, China and adjacent bottom relief on the path of the Kuroshio. Studia Marina Sinica (in Chinese), 14:1-21
    Guo Jingsong, Feng Yin, Yuan Yeli, et al. 2013. Kuroshio Loop Current intruding into the South China Sea and its shedding eddy. Oceanologia et Limnologia Sinica (in Chinese), 44(3):537-544
    Ho C R, Zheng Q, Kuo N J, et al. 2004. Observation of the Kuroshio intrusion region in the South China Sea from AVHRR data. International Journal of Remote Sensing, 25(21):4583-4591, doi: 10.1080/0143116042000192376
    Hu Jianyu, Kawamura H, Hong Huasheng, et al. 2000. A review on the currents in the South China Sea:seasonal circulation, South China Sea warm current and Kuroshio Intrusion. Journal of Oceanography, 56(6):607-624, doi: 10.1023/A:1011117531252
    Hu Xiaomin, Xiong Xuejun, Qiao Fangli, et al. 2008. Surface current field and seasonal variability in the Kuroshio and adjacent regions derived from satellite-tracked drifter data. Acta Oceanologica Sinica, 27(3):11-29
    Li Li, Nowlin W D Jr, Su Jilan. 1998. Anticyclonic rings from the Kuroshio in the South China Sea. Deep Sea Research Part I:Oceanographic Research Papers, 45(9):1469-1482, doi: 10.1016/S0967-0637(98)00026-0
    Liang W D, Yang Y J, Tang T Y, et al. 2008. Kuroshio in the Luzon strait. Journal of Geophysical Research, 113(C8):C08048, doi: 10.1029/2007JC004609
    Metzger E J, Hurlburt H E. 1996. Coupled dynamics of the South China Sea, the Sulu Sea, and the Pacific Ocean. Journal of Geophysical Research, 101(C5):12331-12352, doi: 10.1029/95JC03861
    Metzger E J, Hurlburt H E. 2001. The nondeterministic nature of Kuroshio penetration and eddy shedding in the South China Sea. Journal of Physical Oceanography, 31(7):1712-1732, doi: 10.1175/1520-0485(2001)031<1712:TNNOKP>2.0.CO;2
    Nan Feng, Xue Huijie, Chai Fei, et al. 2011. Identification of different types of Kuroshio intrusion into the South China Sea. Ocean Dynamics, 61(9):1291-1304, doi: 10.1007/s10236-011-0426-3
    Nitani H. 1972. Beginning of the Kuroshio. In:Stommel H, Yoshida K, eds. Kuroshio:Its Physical Aspects. Tokyo:University of Tokyo Press, 129-163
    Park G Y, Oh I S. 2007. Seasonal characteristics of the near-surface circulation in the northern South China Sea obtained from satellite-tracked drifters. Ocean Science Journal, 42(2):89-102, doi: 10.1007/BF03020877
    Qu Tangdong, Mitsudera H, Yamagata T. 2000. Intrusion of the North Pacific waters into the South China Sea. Journal of Geophysical Research, 105(C3):6415-6424, doi: 10.1029/1999JC900323
    Shaw P T, Chao S Y. 1994. Surface circulation in the South China Sea. Deep Sea Research Part I:Oceanographic Research Papers, 41(11-12):1663-1683
    Shaw P T, Chao S Y, Fu L L. 1999. Sea surface height variations in the South China Sea from satellite altimetry. Oceanologica Acta, 22(1):1-17, doi: 10.1016/S0399-1784(99)80028-0
    Sheremet V A. 2001. Hysteresis of a western boundary current leaping across a gap. Journal of Physical Oceanography, 31(5):1247-1259, doi: 10.1175/1520-0485(2001)031<1247:HOAWBC>2.0.CO;2
    Sheu W J, Wu C R, Oey L Y. 2010. Blocking and westward passage of eddies in the Luzon Strait. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 57(19-20):1783-1791, doi: 10.1016/j.dsr2.2010.04.004
    Wang J, Chern C S. 1987. The warm-core eddy in the northern South China Sea, I. Preliminary observations on the warm-core eddy. Acta Oceanographica Taiwanica, 18:92-103
    Wyrtki K. 1961. Physical oceanography of the Southeast Asian waters. Scientific results of marine investigations of the South China Sea and the Gulf of Thailand. NAGA Report, La Jolla, CA:Scripps Institution of Oceanography, 1-195
    Yu Z, Shen S, McCreary J P, et al. 2007. South China Sea throughflow as evidenced by satellite images and numerical experiments. Geophysical Research Letters, 34(1):L01601, doi: 10.1029/2006GL028103
    Yuan Dongliang, Han Weiqing, Hu Dunxin. 2006. Surface Kuroshio path in the Luzon Strait area derived from satellite remote sensing data. J Geophys Res, 111(C11):C11007, doi: 10.1029/2005JC003412
    Zhang Zhixin, Guo Jingsong, Guo Binghuo. 2016. Reversal process of the South China Sea western boundary current in autumn 2011. Chinese Journal of Oceanology and Limnology, 34(3):608-618, doi: 10.1007/s00343-016-4388-7
    Zheng Quanan, Tai Changkuo, Hu Jianyu, et al. 2011. Satellite altimeter observations of nonlinear Rossby eddy-Kuroshio interaction at the Luzon Strait. Journal of Oceanography, 67(4):365-376, doi: 10.1007/s10872-011-0035-2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (596) PDF downloads(412) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return