Zhang Chenguang, Li Chunyan. Effects of hurricane forward speed and approach angle on storm surges: an idealized numerical experiment[J]. Acta Oceanologica Sinica, 2019, 38(7): 48-56. doi: 10.1007/s13131-018-1081-z
Citation: Zhang Chenguang, Li Chunyan. Effects of hurricane forward speed and approach angle on storm surges: an idealized numerical experiment[J]. Acta Oceanologica Sinica, 2019, 38(7): 48-56. doi: 10.1007/s13131-018-1081-z

Effects of hurricane forward speed and approach angle on storm surges: an idealized numerical experiment

doi: 10.1007/s13131-018-1081-z
  • Received Date: 2018-11-19
  • The effects of hurricane forward speed (V) and approach angle (θ) on storm surge are important and a systematic investigation covering possible and continuous ranges of these parameters has not been done before. Here we present such a study with a numerical experiment using the Finite Volume Community Ocean Model (FVCOM). The hurricane track is simplified as a straight line, such that V and θ fully define the motion of the hurricane. The maximum surge is contributed by both free waves and a forced storm surge wave moving with the hurricane. Among the free waves, Kelvin-type waves can only propagate in the down-coast direction. Simulations show that those waves can only have a significant positive storm surge when the hurricane velocity has a down-coast component. The optimal values of V and θ that maximize the storm surge in an idealized semi-circular ocean basin are functions of the bathymetry. For a constant bathymetry, the maximum surge occurs when the hurricane approaches the coast from the normal direction when the free wave generation is minimal; for a stepped bathymetry, the maximum surge occurs at a certain acute approach angle which maximizes the duration of persistent wind forcing; a step-like bathymetry with a sloped shelf is similar to the stepped bathymetry, with the added possibility of landfall resonance when the free and forced waves are moving at about the same velocity. For other cases, the storm surge is smaller, given other parameters (hurricane size, maximum wind speed, etc.) unchanged.
  • loading
  • Blake E S, Rappaport E N, Jarrell J D, et al. 2007. The deadliest, costliest, and most intense United States tropical cyclones from 1851 to 2006 (and Other Frequently Requested Hurricane Facts). Miami:National Weather Service, National Hurricane Center
    Chen Changsheng, Liu H., R.C. Beardsley 2003. An unstructured grid, finite-volume, three dimensional, primitive equation ocean model:application to coastal ocean and estuaries, J. Atmos. Oceanic Technol., 20:159-186, doi: 10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2
    Conner W C, Kraft R H, Lee Harris D. 1957. Empirical methods for forecasting the maximum storm tide due to hurricanes and other tropical storms. Monthly Weather Review, 85(4):113-116, doi: 10.1175/1520-0493(1957)085<0113:EMFFTM>2.0.CO;2
    Das P K, Sinha M C, Balasubramanyam V. 1974. Storm surges in the Bay of Bengal. Quarterly Journal of the Royal Meteorological Society, 100(425):437-449, doi: 10.1002/qj.49710042515
    Ding Yang, Yu Huaming, Bao Xianwen, et al. 2011. Numerical study of the Barotropic responses to a rapidly moving typhoon in the East China Sea. Ocean Dynamics, 61(9):1237-1259, doi: 10.1007/s10236-011-0436-1
    Emanuel K A. 1987. The dependence of hurricane intensity on climate. Nature, 326(6112):483-485, doi: 10.1038/326483a0
    Fandry C B, Leslie L M, Steedman R K. 1984. Kelvin-type coastal surges generated by tropical cyclones. Journal of Physical Oceanography, 14(3):582-593, doi: 10.1175/1520-0485(1984)014<0582:KTCSGB>2.0.CO;2
    Flierl G R, Robinson A R. 1972. Deadly surges in the Bay of Bengal:dynamics and storm-tide tables. Nature, 239(5369):213-215, doi: 10.1038/239213a0
    Gill A E. 1982. Atmosphere-Ocean Dynamics. New York:Academic Press
    Greenspan H P. 1956. The generation of edge waves by moving pressure distributions. Journal of Fluid Mechanics, 1(6):574-592, doi: 10.1017/S002211205600038X
    Holland G J. 1980. An analytic model of the wind and pressure profiles in hurricanes. Monthly Weather Review, 108(8):1212-1218, doi: 10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2
    Hoover R A. 1957. Empirical relationships of the central pressures in hurricanes to the maximum surge and storm tide. Monthly Weather Review, 85(5):167-174, doi: 10.1175/1520-0493(1957)085<0167:EROTCP>2.0.CO;2
    Irish J L, Resio D T, Ratcliff J J. 2008. The influence of storm size on hurricane surge. Journal of Physical Oceanography, 38(9):2003-2013, doi: 10.1175/2008JPO3727.1
    Jelesnianski C P. 1966. Numerical computations of storm surges without bottom stress. Monthly Weather Review, 94(6):379-394, doi: 10.1175/1520-0493(1966)094<0379:NCOSSW>2.3.CO;2
    Jelesnianski C P. 1967. Numerical computations of storm surges with bottom stress. Monthly Weather Review, 95(11):740-756, doi: 10.1175/1520-0493(1967)095<0740:NCOSSW>2.3.CO;2
    Kajiura K. 1962. A note on the generation of boundary waves of kelvin type. Journal of the Oceanographical Society of Japan, 18(2):49-58, doi: 10.5928/kaiyou1942.18.49
    Ke Ziming, Yankovsky A E. 2010. The hybrid kelvin-edge wave and its role in tidal dynamics. Journal of Physical Oceanography, 40(12):2757-2767, doi: 10.1175/2010JPO4430.1
    Kennedy A B, Gravois U, Zachry B C, et al. 2011. Origin of the hurricane Ike forerunner surge. Geophysical Research Letters, 38(8):L08608, doi: 10.1029/2011GL047090
    Knutson T R, McBride J L, Chan J, et al. 2010. Tropical cyclones and climate change. Nature Geoscience, 3(3):157-163, doi: 10.1038/ngeo779
    Kowalik Z, Murty T S. 1993. Numerical Modeling of Ocean Dynamics. London:World Scientific
    Large W G, Pond S. 1981. Open ocean momentum flux measurements in moderate to strong winds. Journal of Physical Oceanography, 11(3):324-336, doi: 10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2
    Li Chunyan. 1996. Tidally induced residual circulation in estuaries with cross channel bathymetry[dissertation]. Storrs:University of Connecticut, 1-242
    Li Chunyan, Liu Fengshu. 1987. A method for the analysis of three dimensional oceanic long wave motions. Oceanologia et Limnologia Sinica (in Chinese), 18(3):237-243
    Mercer D, Sheng Jinyu, Greatbatch R J, et al. 2002. Barotropic waves generated by storms moving rapidly over shallow water. Journal of Geophysical Research:Oceans, 107(C10):16-1-16-7, doi: 10.1029/2001JC001140
    Morey S L, Baig S, Bourassa M A, et al. 2006. Remote forcing contribution to storm-induced sea level rise during hurricane Dennis. Geophysical Research Letters, 33(19):doi: 10.1029/2006GL027021
    Murakami H, Levin E, Delworth T L, et al. 2018. Dominant effect of relative tropical Atlantic warming on major hurricane occurrence. Science, 362(6416):794-799, doi: 10.1126/science.aat6711
    Murty T S. 1984. Storm Surges-Meteorological Ocean Tides. Canada:National Research Council of Canada
    Peng Machuan, Xie Lian, Pietrafesa L J. 2006a. A numerical study on hurricane-induced storm surge and inundation in Charleston Harbor, South Carolina. Journal of Geophysical Research:Oceans, 111(C8):doi: 10.1029/2004JC002755
    Peng Machuan, Xie Lian, Pietrafesa L J. 2006b. Tropical cyclone induced asymmetry of sea level surge and fall and its presentation in a storm surge model with parametric wind fields. Ocean Modelling, 14(1-2):81-101, doi: 10.1016/j.ocemod.2006.03.004
    Proudman J. 1955. The propagation of tide and surge in an estuary. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 231(1184):8-24, doi: 10.1098/rspa.1955.0153
    Rego J L, Li Chunyan. 2009. On the importance of the forward speed of hurricanes in storm surge forecasting:a numerical study. Geophysical Research Letters, 36(7):doi: 10.1029/2008GL036953
    Rego J L, Li Chunyan. 2010a. Nonlinear terms in storm surge predictions:effect of tide and shelf geometry with case study from hurricane Rita. Journal of Geophysical Research:Oceans, 115(C6):doi: 10.1029/2009JC005285
    Rego J L, Li Chunyan. 2010b. Storm surge propagation in Galveston bay during hurricane Ike. Journal of Marine Systems, 82(4):265-279, doi: 10.1016/j.jmarsys.2010.06.001
    Rossiter J R. 1958. Storm surges in the North Sea, 11 to 30 December 1954. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 251(991):139-160, doi: 10.1098/rsta.1958.0012
    Thiebaut S, Vennell R. 2011. Resonance of long waves generated by storms obliquely crossing shelf topography in a Rotating Ocean. Journal of Fluid Mechanics, 682:261-288, doi: 10.1017/jfm.2011.221
    Thomson R E. 1970. On the generation of kelvin-type waves by atmospheric disturbances. Journal of Fluid Mechanics, 42(4):657-670, doi: 10.1017/S0022112070001532
    Weenink M P H. 1956. The "Twin" Storm Surges during 21st-24th December, 1954. A case of resonance. Deutsche Hydrografische Zeitschrift, 9(5):240-249, doi: 10.1007/BF02020089
    Weisberg R H, Zheng Lianyuan. 2006. Hurricane storm surge simulations for Tampa Bay. Estuaries and Coasts, 29(6):899-913, doi: 10.1007/BF02798649
    Yankovsky A E. 2008. Long-wave response of the West Florida shelf to the landfall of hurricane Wilma, October 2005. Journal of Coastal Research, 24(4A):33-39, doi: 10.2112/06-0824.1
    Yankovsky A E. 2009. Large-scale edge waves generated by hurricane landfall. Journal of Geophysical Research:Oceans, 114(C3):C03014, doi: 10.1029/2008JC005113
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (662) PDF downloads(391) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return