LIN Junhui, HUANG Yaqin, ARBI Ucu Yanu, LIN Heshan, AZKAB Muhammad Husni, WANG Jianjun, HE Xuebao, MOU Jianfeng, LIU Kun, ZHANG Shuyi. An ecological survey of the abundance and diversity of benthic macrofauna in Indonesian multispecific seagrass beds[J]. Acta Oceanologica Sinica, 2018, 37(6): 82-89. doi: 10.1007/s13131-018-1181-9
Citation: LIN Junhui, HUANG Yaqin, ARBI Ucu Yanu, LIN Heshan, AZKAB Muhammad Husni, WANG Jianjun, HE Xuebao, MOU Jianfeng, LIU Kun, ZHANG Shuyi. An ecological survey of the abundance and diversity of benthic macrofauna in Indonesian multispecific seagrass beds[J]. Acta Oceanologica Sinica, 2018, 37(6): 82-89. doi: 10.1007/s13131-018-1181-9

An ecological survey of the abundance and diversity of benthic macrofauna in Indonesian multispecific seagrass beds

doi: 10.1007/s13131-018-1181-9
  • Received Date: 2017-03-16
  • Rev Recd Date: 2017-07-18
  • Seagrasses are one of the most productive ecosystems in coastal areas and support a wide variety of associated fauna. The tropical Indo-Pacific region is considered to have the highest diversity of seagrass plant species and the largest distribution areas of seagrass, yet the seagrass macrofauna in this region are poorly understood. To help fill this gap in our knowledge, an ecological survey was conducted to describe the abundance and diversity of benthic macrofauna from tropical seagrass beds and to determine between-station variations within a transect and between-site variations in macrofaunal abundance, taxa richness and community structure. Benthic macrofaunal samples associated with seagrass beds were collected with a core sampler on the east coast of North Sulawesi in May 2014 and on the west coast in October 2015. A total of 149 species from 14 higher taxa was collected. The most species-rich groups were polychaetes (56 species, 26% of total individual numbers), decapods (20 species, 9% of total numbers) and amphipods (18 species, 35% of total numbers). Between-station variations within a transect displayed different patterns between the east coast and the west coast. On the east coast, there were marked variations in abundance between stations within a transect for the macrofauna and amphipod assemblages. Both taxa richness and abundance varied with station for the macrofauna and polychaete assemblages on the west coast, resulting from the heterogeneity of the substrate along a transect. One-way ANOSIM together with MDS ordination indicated that macrofaunal community structure in seagrasses differed significantly between the east coast and the west coast, corresponding with the division of seagrasses into two broad categories of habitats, i.e., mangrove-seagrass-reef continuum and seagrass-reef continuum. Compared with other studies in tropical areas, the abundance and diversity of benthic macrofauna in the present study were moderate. The reason for the two markedly distinct macrofaunal communities might be attributed to multiple factors, including sediment pattern, seagrass structure and temporal changes.
  • loading
  • Adulyanukosol K, Poovachiranon S. 2006. Dugong (Dugong dugon) and seagrass in Thailand:present status and future challenges. In:Proceedings of the 3rd International Symposium on SEASTAR 2000 and Asian Bio-logging Science (The 7th SEASTAR 2000 workshop). Kyoto:Kyoto University, 41-50
    Boaventura D, Da Fonseca L C, Teles-Ferreira C. 1999. Trophic structure of macrobenthic communities on the Portuguese coast. A review of lagoonal, estuarine and rocky littoral habitats. Acta Oecologica, 20(4):407-415
    Bos A R, Gumanao G S, Alipoyo J C E, et al. 2008. Population dynamics, reproduction and growth of the Indo-Pacific horned sea star, Protoreaster nodosus (Echinodermata; Asteroidea). Marine Biology, 156(1):55-63
    Bray J R, Curtis J T. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs, 27(4):325-349
    Clarke K R, Warwick R M. 1994. Change in Marine Communities:An Approach to Statistical Analysis and Interpretation. 2nd ed. United Kingdom:Plymouth, 144
    Den Hartog C. 1970. The Sea-grasses of the World. Amsterdam, the Netherlands:North Holland, 1-275
    Duarte C M, Chiscano C L. 1999. Seagrass biomass and production:a reassessment. Aquatic Botany, 65(1–4):159-174
    Eyre B D, Ferguson A J P. 2002. Comparison of carbon production and decomposition, benthic nutrient fluxes and denitrification in seagrass, phytoplankton, benthic microalgae- and macroalgae- dominated warm-temperate Australian lagoons. Marine Ecology Progress Series, 229:43-59
    Fonseca M S. 1989. Sediment stabilization by Halophila decipiens in comparison to other seagrasses. Estuarine, Coastal and Shelf Science, 29(5):501-507
    Green E P, Short F T. 2003. World Atlas of Seagrasses. Oakland:University of California Press, 310
    Heck K L Jr, Carruthers T J B, Duarte C M, et al. 2008. Trophic transfers from seagrass meadows subsidize diverse marine and terrestrial consumers. Ecosystems, 11(7):1198-1210
    Hutchings P A, Wells F E, Walker D I, et al. 1991. Seagrass, sediment and infauna—A comparison of Posidonia australis, Posidonia sinuosa and Amphibolis antarctica in Princess Royal Harbour, south-western Australia:Ⅱ. Distribution, composition and abundance of macrofauna. In:Wells F E, Walker D I, Kirkman H, et al., eds. Proceedings of the 3rd International Marine Biological Workshop:The Marine Flora and Fauna of Albany, Western Australia. Perth:Western Australian Museum
    Klumpp D W, Howard R K, Pollard D A. 1989. Trophodynamics and nutritional ecology of seagrass communities. In:Larkum A W D, McComb A J, Shepherd S A, eds. Biology of Seagrasses:A Treatise on the Biology of Seagrasses with Special Reference to the Australian Region. Amsterdam:Elsevier, 394-437
    Klumpp D W, Kwak N N. 2005. Composition and abundance of benthic macrofauna of a tropical sea-grass bed in North Queensland, Australia. Pacific Science, 59(4):541-560
    Leopardas V, Uy W, Nakaoka M. 2014. Benthic macrofaunal assemblages in multispecific seagrass meadows of the southern Philippines:Variation among vegetation dominated by different seagrass species. Journal of Experimental Marine Biology and Ecology, 457:71-80
    摌楥敷獩?漠晢?扇椠潆搬椠癓整牯獮楥瑲礠?攠晗昮攠挱琹猸???慄物楳湴敲??捵潴汩潯杮礠?偦爠潭条牣敲獯獦?卵敮牡椠敷獩??????????ち??戠牢?呤慳渺湁敮爠???????ぴど????摯杲攠?敡晴晴敥捲瑮獳?潯湦?晡慢畵湮慤?楮湣?昮爠慂杵浬敬湥瑴敩摮?獯敦愠杍牡慲獩獮?洠敓慣摩潥睮獣???甲猨琳爳愩氺′?挶漭氳漰朴礼???き????㈠???????扫物?噔愬氠敎湯瑪楩湭敡???????改挮欠??牲???????慣牡灬攠物?偰??散瑡?慩汯??ㄠ??????晧晲敡捳瑳猠?潵晢?扴楲潡瑴畵牭戠慦瑯楲漠湭?楢湩?捥漠湥瑰物潦污汵楮湡朠?瑯畭牭瑵汮敩杴特愬猠獒???楮?味桴愬氠慗獥獳楴慥?瑮攠獁瑵畳摴楲湡畬浩??椠???慗湥歬獬??楆?故砬??楡?????????渠楋杩??慭扡畮渠摈愬渠捥整??癬椮搬攠湥捤敳?映牔潨浥?晳楥敡汧摲?敳湳挠汦潬獯畲牡攠獡?慤渠摦?潵扮獡攠牯癦愠瑒楯潴湴獮?楳湴?瑉桳敬?湮潤爬琠桗敥牳湴??畮氠晁?潳晴??敬硩楡挮漠???潴畨爺湗慥汳?潥晲??硁灵敳牴楲浡敬湩瑡慮氠??慳牥極湭攬??椵漵氭漲朷礴?慢湲搾??捫潡汯潫条礠??ㄠ???㈱??????????扡牬?嘠潶湡歲???????桩牮椠獡琠楢慥湮整湨????????卮瑩慴灹攠污????㈠ど?ぴ???扩畤湡摬愠湦捬敡??敩摮朠整?敡晩晬敡据瑤??慦湦摥?獴敳愠獯潦渠慳汰楡瑴祩?潬映?晥慴略湲慯?楥湮?浩楴硹攠摯?猠灳敥捡楧敲獡?獳攠慶来牧慥獴獡?浩敯慮搮漠睂獥?楴湨?獳漠畒瑥桳睥敡獲瑣?匬甠氵愶眨攲猩椺?″?渷搱漼湢敲猾楏慲???慒爠楊測攠??楲潲汵潴杨祥?剳攠獔攠慊爠捂栬?????????㈠?㈠???扥牴?坡慬礮挠漲琰琰?????畧慬牯瑢敡???????慳爠牦畯瑲栠敳牥獡?呲??????敯瑳?慳汴?????????捣捩敥汮散牥愬琠椵渶木?氲漩猺猹?漷昭?猹收愼杢牲愾獏獲整獨?慒挠牊漬猠獈?瑣桫攠?朠汌漬戠敖?瑮栠牍敯慮瑴敦湲獡?捳漠慊献琠愱氹?攴挮漠獆祡獵瑮敡浬猠??偭牭潵据敩整摩楥湳朠獩?漠晳?瑡桧敲?乳慳琠楢潥湤慳氦??挲愱搲攻流礠?潥晶?卥捷椠敯湦挠整獨?漠晩?瑦桬敵?啮湣楥琠敯摦?印瑬慡瑮整猠?潴晲??浴敵牲楥挠慡??ㄠば??????????????????扳爠?坮愠祰捲潥瑤瑡?????捲?慹栠潲湥?????敮汳汨潩牰獳????整瑵?慲汩??水??????″?甹椭搳攵‰琼潢?吾牒潡灩楮捥慲氠?匠敆愬朠牆慩獴獺敨獡?潤晩?瑧桥攠??湃搮漠?圹攸猱琮?偂慥据楴晨楩捣??呯潭睭湵獮癩楴汩汥敳??慮洠敡獮??潳潴歵?啲湹椠癷敩牴獨椠瑰祥?????扣爠?坥桯慸湹灧敥瑮捡桴?乯??丠慁歵慳潴歲慡?????畊歯慵楲????敯瑦?慍污???づ????吠獆畲湥慳浨楷?楴浥灲愠捒瑥獳?潡湲?扨椬漠搳椲瘨攲爩猺椲琲礷?漲昴″猼敢慲朾牒慨獯獡?捳漠浄洠畃渮椠琱椹攷猵?椠湏?瑧桡敮??湭搭慳浥慤湩?卥敮慴??呥桬慡楴汩慯湮摳?????慨扥甠湭摵慤湤捹攠?慥湡搠?摬楯癯敲爮猠楏瑣祥?潮景?扲敡湰瑨桹椠捡?慤渠楍浡慲汩獮??偂畩扯汬楯捧慹琺楁潮渠獁?潮晵?瑬栠敒?卶敩瑥潷??愱爲椺渲收″?椳漰氰漼杢楲挾慓污??慧扥潲爠慐琬漠片祡??即灩敤捥椠慄氬?偆畵扮汧楥挭慓瑭楩潴湨?卓攮爠椲攰猱??????????扷爠?坦椠汍污楮慧浲獯?卥?????敓捥歡??牡???????べび???即攠慡杮牤愠獔獨?捩潲洠浌畩湮楫瑡祧?攠捴潯氠潆杩祳???湩??攠牡瑮湤攠獆獩???????愠楍湡敮獡?卥?????愠祂??????攬搠獔???慬牡楮湤攺??潯浤洠畡湮楤琠祁??捩潣汵潬杴祵??匠畏湲摧敡牮汩慺湡摴???愠獯獦愠捴桨略猠敕瑮瑩獴?卤椠湎慡畴敩牯??猠獒潥捧楩慯瑮楡潬渠???湩捣?????????a and the Pacific, 75
    Short F, Carruthers T, Dennison W, et al. 2007. Global seagrass distribution and diversity:A bioregional model. Journal of Experimental Marine Biology and Ecology, 350(1–2):3-20
    Snelgrove P V R, Butman C A. 1994. Animal-sediment relationships revisited:cause versus effect. Oceanography and Marine Biology:An Annual Review, 32:111-177
    Somerfield P J, Yodnarasri S, Aryuthaka C. 2002. Relationships between seagrass biodiversity and infaunal communities:Implications for stu
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (794) PDF downloads(642) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return