Citation: | CHEN Jie, TAO Chunhui, LIANG Jin, LIAO Shili, DONG Chuanwan, LI Huaiming, LI Wei, WANG Yuan, YUE Xihe, HE Yonghua. Newly discovered hydrothermal fields along the ultraslow-spreading Southwest Indian Ridge around 63°E[J]. Acta Oceanologica Sinica, 2018, 37(11): 61-67. doi: 10.1007/s13131-018-1333-y |
Bach W, Banerjee N R, Dick H J B, et al. 2002. Discovery of ancient and active hydrothermal systems along the ultra-slow spreading Southwest Indian Ridge 10°-16°E. Geochemistry, Geophysics, Geosystems, 3(7):1044
|
Baker E T. 2017. Exploring the ocean for hydrothermal venting:new techniques, new discoveries, new insights. Ore Geology Reviews, 86:55-69, doi: 10.1016/j.oregeorev.2017.02.006
|
Baker E T, Chen Y J, Morgan J P. 1996. The relationship between near-axis hydrothermal cooling and the spreading rate of mid-ocean ridges. Earth and Planetary Science Letters, 142(1-2):137-145, doi: 10.1016/0012-821X(96)00097-0
|
Baker E T, Edmonds H N, Michael P J, et al. 2004. Hydrothermal venting in magma deserts:the ultraslow-spreading Gakkel and Southwest Indian Ridges. Geochemistry, Geophysics, Geosystems, 5(8),
|
Baker E T, Feely R A, Mottl M J, et al. 1994. Hydrothermal plumes along the East Pacific Rise, 8°40' to 11°50'N:plume distribution and relationship to the apparent magmatic budget. Earth and Planetary Science Letters, 128(1-2):1-17, doi: 10.1016/0012-821X(94)90022-1
|
Baker E T, Hémond C, Briais A, et al. 2014. Correlated patterns in hydrothermal plume distribution and apparent magmatic budget along 2500 km of the Southeast Indian Ridge. Geochemistry, Geophysics, Geosystems, 15(8):3198-3211, doi: 10.1002/2014GC005344
|
Cannat M, Rommevaux-Jestin C, Fujimoto H. 2003. Melt supply variations to a magma-poor ultra-slow spreading ridge (Southwest Indian Ridge 61° to 69°E). Geochemistry, Geophysics, Geosystems, 4(8):9104
|
Cannat M, Rommevaux-Jestin C, Sauter D, et al. 1999. Formation of the axial relief at the very slow spreading Southwest Indian Ridge (49° to 69°E). Journal of Geophysical Research:Solid Earth, 104(B10):22825-22843, doi: 10.1029/1999JB900195
|
Cannat M, Sauter D, Mendel V, et al. 2006. Modes of seafloor generation at a melt-poor ultraslow-spreading ridge. Geology, 34(7):605-608, doi: 10.1130/G22486.1
|
Dick H J, Lin J, Schouten H. 2003. An ultraslow-spreading class of ocean ridge. Nature, 426(6965):405-412, doi: 10.1038/nature02128
|
Edmonds H N, Michael P J, Baker E T, et al. 2003. Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic Ocean. Nature, 421(6920):252-256, doi: 10.1038/nature01351
|
German C R, Baker E T, Mevel C, et al. 1998. Hydrothermal activity along the southwest Indian ridge. Nature, 395(6701):490-493, doi: 10.1038/26730
|
German C R, Klinkhammer G P, Rudnicki M D. 1996. The rainbow hydrothermal plume, 36°15'N, MAR. Geophysical Research Letters, 23(21):2979-2982, doi: 10.1029/96GL02883
|
German C R, Petersen S, Hannington M D. 2016. Hydrothermal exploration of mid-ocean ridges:where might the largest sulfide deposits be forming? Chemical Geology, 420:114-126, doi: 10.1016/j.chemgeo.2015.11.006
|
Hannington M, Jamieson J, Monecke T, et al. 2011. The abundance of seafloor massive sulfide deposits. Geology, 39(12):1155-1158, doi: 10.1130/G32468.1
|
Haymon R M, Fornari D J, Edwards M H, et al. 1991. Hydrothermal vent distribution along the East Pacific Rise crest (9°09'-54'N) and its relationship to magmatic and tectonic processes on fast-spreading mid-ocean ridges. Earth and Planetary Science Letters, 104(2-4):513-534, doi: 10.1016/0012-821X(91)90226-8
|
Hebert L B, Montési L G J. 2010. Generation of permeability barriers during melt extraction at mid-ocean ridges. Geochemistry, Geophysics, Geosystems, 11(12):Q12008
|
Horner-Johnson B C, Gordon R G, Cowles S M, et al. 2005. The angular velocity of Nubia relative to Somalia and the location of the Nubia-Somalia-Antarctica triple junction. Geophysical Journal International, 162(1):221-238, doi: 10.1111/gji.2005.162.issue-1
|
Lalou C, Reyss J L, Brichet E, et al. 1995. Hydrothermal activity on a 105-year scale at a slow-spreading ridge, TAG hydrothermal field, Mid-Atlantic Ridge 26°N. Journal of Geophysical Research:Solid Earth, 100(B9):17855-17862, doi: 10.1029/95JB01858
|
Meyzen C M, Toplis M J, Humler E, et al. 2003. A discontinuity in mantle composition beneath the southwest Indian Ridge. Nature, 421(6924):731-733, doi: 10.1038/nature01424
|
Minshull T A, Muller M R, White R S. 2006. Crustal structure of the Southwest Indian Ridge at 66°E:seismic constraints. Geophysical Journal International, 166(1):135-147, doi: 10.1111/gji.2006.166.issue-1
|
Momoh E, Cannat M, Watremez L, et al. 2017. Quasi-3-D seismic reflection imaging and wide-angle velocity structure of nearly amagmatic oceanic lithosphere at the ultraslow-spreading Southwest Indian Ridge. Journal of Geophysical Research:Solid Earth, 112(12):9511-9533
|
Münch U, Lalou C, Halbach P, et al. 2001. Relict hydrothermal events along the super-slow Southwest Indian spreading ridge near 63°56'E-mineralogy, chemistry and chronology of sulfide samples. Chemical Geology, 177(3-4):341-349, doi: 10.1016/S0009-2541(00)00418-6
|
Patriat P, Sauter D, Munschy M, et al. 1997. A survey of the Southwest Indian ridge axis between Atlantis Ⅱ Fracture Zone and the Indian Ocean triple junction:regional setting and large scale segmentation. Marine Geophysical Researches, 19(6):457-480, doi: 10.1023/A:1004312623534
|
Pluger W L, Herzig P M, Becker K P, et al. 1990. Discovery of hydrothermal fields at the central Indian ridge. Marine Mining, 9:73-86
|
Rona P A, Klinkhammer G, Nelsen T A, et al. 1986. Black smokers, massive sulphides and vent biota at the Mid-Atlantic Ridge. Nature, 321(6065):33-37, doi: 10.1038/321033a0
|
Sato T, Okino K, Sato H, et al. 2013. Magmatic activities on the Southwest Indian Ridge between 35°E and 40°E, the closest segment to the Marion hotspot. Geochemistry, Geophysics, Geosystems, 14(12):5286-5307, d慯潩??栰甮渱栰田椲???楧??當愱椴洮椱渲朼???楓湡?塴楥慲漠扄椬渠权??敮瑡?愠汍???は????匲攳愳昻汪潯潮爠?栬礠摥牴漠瑡桬攮爠洲愰氱″愮挠瑃楯癮楴瑩祮?慯湵摳?灥潸汨祵浭敡瑴慩汯汮椠捯?猠畭污普楴摬敥?敤硥灲汩潶牥慤琠楲潯湣?潳渠?瑴栠整?獥漠畓瑯桵睴敨獷瑥??渠摉楮慤湩?牮椠摒杩敤???桦楯湲攠猱攱?卭捩楬敬湩捯敮??略污汲敳琮椠湎?????ㄠ??????????????搴漩椺?????????獤?????????????????户爱?呢慲漾??桵畴湥桲甠楄???楡湴??楡慴渠???畒潯?卭桥楶煡極湸??敥瑳?慩汮??水??????椮爠猲琰‰愱挮琠楔癨敥?桓祯摵牴潨瑷桥敳牴洠慉汮?癩敡湮琠獒?潤湧?愠湢?畴汷瑥牥慮猠水漹眦?猱瀷父攻愱搵椧湅朠?据敤渠琵攷爦?猱漷甶琻桅眺敦獯瑣??湥摤椠慡湣?割楥摴杩敯???敮潤氠潭条祧???ひ????????ふ??摯潮椮??ち????ち??????????扲特?奓慣湩来?坣敥椠晌慥湴杴??味愬漠??栲用渳栩町椳?″?椳??甬愠楤浯楩渺朱??攱琰?愶氯?‰日????′?獘用瀰?㈩????猵甭瀱?呢桲??獣畨灥??????猠畓瀬?啂?摫慥瑲椠湅朠?漬映?桯票摮牳潯瑮栠敋爠浔愠汍?猠由氹昹椸搮攠獄?晴牥潣浴??畮愠湯煦椠慨潹?桲祯摴牨潥瑲桭敡牬洠慰汬?晭楥敳氠摡??卮潧甠瑴桨睥攠獓瑯??湨摥楡慳湴?剉楮摤杩敡???慩牤楧湥攠??敡潲瀠桴票獥椠捁慭汳?剥敲獤敡慭爭捓桴?????????????????摥潯楰??び??ちぬ??獥??ちひ???????????礠25(1):97-100, doi: 10.1029/97GL03443
|
Schmidt K, Koschinsky A, Garbe-Schönberg D, et al. 2007. Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field, 15°N on the Mid-Atlantic Ridge:temporal and spatial investigation. Chemical Geology, 242(1-2):1-21, doi: 10.1016/j.chemgeo.2007.01.023
|
Seyler M, Cannat M, Mével C. 2003. Evidence for major-element heterogeneity in the mantle source of abyssal peridotites from the Southwest Indian Ridge (52° to 68°E). Geochemistry, Geophysics, Geosystems, 4(2):9101
|
Smith D. 2013. Tectonics:mantle spread across the sea floor. Nature Geoscience, 6(4):247-248, doi: 10.1038/ngeo1786
|
Son J, Pak S J, Kim J, et al. 2014. Tectonic and magmatic control of hydrothermal activity along the slow-spreading Central Indian Ridge, 8°S-17°S. Geochemistry, Geophysics, Geosystems, 15(5):2011-2020, doi: 10.1002/2013GC005206
|
Standish J J, Sims K W W. 2010. Young off-axis volcanism along the ultraslow-spreading Southwest Indian Ridge. Nature Geoscience, 3(4):286-292, doi: 10.1038/ngeo824
|
Tao Chunhui, Chen Sheng, Baker E T, et al. 2017. Hydrothermal plume mapping as a prospecting tool for seafloor sulfide deposits:a case study at the Zouyu-1 and Zouyu-2 hydrothermal fields in the southern Mid-Atlantic Ridge. Marine Geophysical Research, 38(1-2):3-16, doi: 10.1007/s11001-016-9275-2
|
T
|
1. | Elmar Albers, Alexander Diehl, Jessica N. Fitzsimmons, et al. Ultramafic-influenced submarine venting on basaltic seafloor at the Polaris site, 87°N, Gakkel Ridge. Earth and Planetary Science Letters, 2025, 651: 119166. doi:10.1016/j.epsl.2024.119166 | |
2. | Jin Liang, Chunhui Tao, Jonguk Kim, et al. Morphology of sulfide structures in the active hydrothermal fields of Indian Ocean ridges and its geological implications. Deep Sea Research Part I: Oceanographic Research Papers, 2024, 203: 104215. doi:10.1016/j.dsr.2023.104215 | |
3. | Morgane Léon, Pieter van Beek, Virginie Sanial, et al. Investigation of hydrothermal activity in the South West Indian ridge region using Ra isotopes and 227Ac as tracers. Progress in Oceanography, 2024, 221: 103191. doi:10.1016/j.pocean.2023.103191 | |
4. | Zhongyan Qiu, Weijia Fan, Xiqiu Han, et al. Distribution, speciation and mobility of metals in sediments of the Tianxiu hydrothermal field, Carlsberg Ridge, Northwest Indian Ocean. Journal of Marine Systems, 2023, 237: 103826. doi:10.1016/j.jmarsys.2022.103826 | |
5. | Weifang Yang, Chunhui Tao, Shili Liao, et al. Record of hydrothermal activity in the Yuhuang hydrothermal field and its implications for the Southwest Indian Ridge: evidence from sulfide chronology. Acta Oceanologica Sinica, 2023, 42(11): 59. doi:10.1007/s13131-023-2287-2 | |
6. | Xing Xu, Shili Liao, Chunhui Tao, et al. Quantifying the influence of magmatism and tectonism on ultraslow-spreading-ridge hydrothermal activity: Evidence from the Southwest Indian Ridge. Geoscience Frontiers, 2023, 14(5): 101584. doi:10.1016/j.gsf.2023.101584 | |
7. | 春辉 陶, 志馗 郭, 锦 梁, et al. 超慢速扩张西南印度洋中脊硫化物成矿模型. SCIENTIA SINICA Terrae, 2023, 53(6): 1216. doi:10.1360/SSTe-2023-0013 | |
8. | Naomi van der Most, Pei-Yuan Qian, Yan Gao, et al. Active hydrothermal vent ecosystems in the Indian Ocean are in need of protection. Frontiers in Marine Science, 2023, 9 doi:10.3389/fmars.2022.1067912 | |
9. | Teng Ding, Ágata Alveirinho Dias, Jia Wang, et al. Serpentinization and its implications for ultramafic-hosted sulfide mineralization: A case study at the Tianzuo hydrothermal field, 63.5°E, Southwest Indian Ridge. Marine Geology, 2023, 455: 106969. doi:10.1016/j.margeo.2022.106969 | |
10. | Chunhui Tao, Zhikui Guo, Jin Liang, et al. Sulfide metallogenic model for the ultraslow-spreading Southwest Indian Ridge. Science China Earth Sciences, 2023, 66(6): 1212. doi:10.1007/s11430-023-1108-7 | |
11. | Jia Wang, Teng Ding, Tingting Tan, et al. Sulfur sources for ultramafic‐hosted sulfide mineralization in the Tianzuo hydrothermal field, 63.5° E, South‐west Indian Ridge: Insights from sulfur and carbon isotopes. Geological Journal, 2023, 58(4): 1325. doi:10.1002/gj.4661 | |
12. | Rengaiyan Periasamy, John Kurian Palayil, Baban Ingole. First record of sponge-associated deep-sea polychaete (Polynoidae: Bathymoorea) on the ultraslow-spreading Southwest Indian Ridge. Deep Sea Research Part I: Oceanographic Research Papers, 2023, 191: 103923. doi:10.1016/j.dsr.2022.103923 | |
13. | Teng Ding, Jia Wang, Chunhui Tao, et al. Trace-element compositions of sulfides from inactive Tianzuo hydrothermal field, Southwest Indian Ridge: Implications for ultramafic rocks hosting mineralization. Ore Geology Reviews, 2022, 140: 104421. doi:10.1016/j.oregeorev.2021.104421 | |
14. | C.G.C. Patten, R. Coltat, M. Junge, et al. Ultramafic-hosted volcanogenic massive sulfide deposits: an overlooked sub-class of VMS deposit forming in complex tectonic environments. Earth-Science Reviews, 2022, 224: 103891. doi:10.1016/j.earscirev.2021.103891 | |
15. | Kurian, P. John, S. Rajan, et al. Indian Ocean Ridge System and Seafloor Hydrothermal Activity. Journal of the Geological Society of India, 2022, 98(2): 155. doi:10.1007/s12594-022-1951-z | |
16. | Xingwei Meng, Xianglong Jin, Xiaohu Li, et al. Subseafloor mineralization related to the shallow seawater-hydrothermal circulation system in the Longqi hydrothermal field, Southwest Indian Ridge (49.6°E): Evidence from in situ trace element and sulfur isotope compositions of pyrite varieties. Ore Geology Reviews, 2022, 145: 104914. doi:10.1016/j.oregeorev.2022.104914 | |
17. | Dhongil Lim, Jihun Kim, Wonnyon Kim, et al. Characterization of Geochemistry in Hydrothermal Sediments From the Newly Discovered Onnuri Vent Field in the Middle Region of the Central Indian Ridge. Frontiers in Marine Science, 2022, 9 doi:10.3389/fmars.2022.810949 | |
18. | Teng Ding, Chunhui Tao, Ágata Alveirinho Dias, et al. Sulfur isotopic compositions of sulfides along the Southwest Indian Ridge: implications for mineralization in ultramafic rocks. Mineralium Deposita, 2021, 56(5): 991. doi:10.1007/s00126-020-01025-0 | |
19. | Hong Cao, Zhilei Sun, Zike Jiang, et al. Source origin and ore-controlling factors of hydrothermal sulfides from the Tianzuo hydrothermal field, Southwest Indian Ridge. Ore Geology Reviews, 2021, 134: 104168. doi:10.1016/j.oregeorev.2021.104168 | |
20. | Junyu Yu, Chunhui Tao, Shili Liao, et al. Resource estimation of the sulfide-rich deposits of the Yuhuang-1 hydrothermal field on the ultraslow-spreading Southwest Indian Ridge. Ore Geology Reviews, 2021, 134: 104169. doi:10.1016/j.oregeorev.2021.104169 | |
21. | Dong Chen, Chunhui Tao, Yuan Wang, et al. Seafloor Hydrothermal Activity around a Large Non-Transform Discontinuity along Ultraslow-Spreading Southwest Indian Ridge (48.1–48.7° E). Journal of Marine Science and Engineering, 2021, 9(8): 825. doi:10.3390/jmse9080825 | |
22. | Yongjin Huang, Chunhui Tao, Jin Liang, et al. Geological characteristics of the Qiaoyue Seamount and associated ultramafic-hosted seafloor hydrothermal system (∼52.1°E, Southwest Indian Ridge). Acta Oceanologica Sinica, 2021, 40(11): 138. doi:10.1007/s13131-021-1832-0 | |
23. | Zhen Dong, Chunhui Tao, Jin Liang, et al. Geochemistry of Basalts from Southwest Indian Ridge 64° E: Implications for the Mantle Heterogeneity East of the Melville Transform. Minerals, 2021, 11(2): 175. doi:10.3390/min11020175 | |
24. | Shili Liao, Chuanwei Zhu, Jianping Zhou, et al. Distal axis sulfide mineralization on the ultraslow-spreading Southwest Indian Ridge: an LA-ICP-MS study of pyrite from the East Longjing-2 hydrothermal field. Acta Oceanologica Sinica, 2021, 40(5): 105. doi:10.1007/s13131-020-1681-2 | |
25. | Jin Sun, Yadong Zhou, Chong Chen, et al. Nearest vent, dearest friend: biodiversity of Tiancheng vent field reveals cross-ridge similarities in the Indian Ocean. Royal Society Open Science, 2020, 7(3): 200110. doi:10.1098/rsos.200110 | |
26. | Sook-Jin Jang, Phuong-Thao Ho, Si-Yeong Jun, et al. A newly discovered Gigantidas bivalve mussel from the Onnuri Vent Field in the northern Central Indian Ridge. Deep Sea Research Part I: Oceanographic Research Papers, 2020, 161: 103299. doi:10.1016/j.dsr.2020.103299 | |
27. | Zhifeng Yang, Xiang Xiao, Yu Zhang. Microbial diversity of sediments from an inactive hydrothermal vent field, Southwest Indian Ridge. Marine Life Science & Technology, 2020, 2(1): 73. doi:10.1007/s42995-019-00007-0 | |
28. | Deepak Kumar Agarwal, Parijat Roy, L. Surya Prakash, et al. Hydrothermal signatures in sediments from eastern Southwest Indian Ridge 63°E to 68°E. Marine Chemistry, 2020, 218: 103732. doi:10.1016/j.marchem.2019.103732 | |
29. | Lan Ma, Wen-Xiong Wang. Subcellular metal distribution in two deep-sea mollusks: Insight of metal adaptation and detoxification near hydrothermal vents. Environmental Pollution, 2020, 266: 115303. doi:10.1016/j.envpol.2020.115303 | |
30. | Qingkai FAN, Jianghai LI, Zhonglan LIU, et al. A Quantitative Method for Active Fault Migration Distance Assessment on both Sides of Mid‐Ocean Ridges—Based on Multi‐Beam Data. Acta Geologica Sinica - English Edition, 2019, 93(4): 810. doi:10.1111/1755-6724.13850 |