Jin Min, Chen Chen, He Xiongfei, Zeng Runying. Characterization of an extreme alkaline-stable keratinase from the draft genome of feather-degrading Bacillus sp. JM7 from deep-sea[J]. Acta Oceanologica Sinica, 2019, 38(2): 87-95. doi: 10.1007/s13131-019-1350-5
Citation: Jin Min, Chen Chen, He Xiongfei, Zeng Runying. Characterization of an extreme alkaline-stable keratinase from the draft genome of feather-degrading Bacillus sp. JM7 from deep-sea[J]. Acta Oceanologica Sinica, 2019, 38(2): 87-95. doi: 10.1007/s13131-019-1350-5

Characterization of an extreme alkaline-stable keratinase from the draft genome of feather-degrading Bacillus sp. JM7 from deep-sea

doi: 10.1007/s13131-019-1350-5
  • Received Date: 2017-05-04
  • Bacillus sp. JM7, a strain isolated from the deep-sea of the South China Sea, was found to efficiently degrade 79.4% native chicken feather within 30 h. Scanning electron microscopy analysis showed that JM7 strain could gradually degrade feather by modifying the microstructure of feather keratin. A total of 25 protease genes were predicted from the draft genome of JM7 strain, among which a predicted subtilisin-like serine protease (designated as Ker02562) was further characterized for its keratinolytic activity. The recombinant Ker02562 functioned at a wide range of temperatures from 30℃ to 60℃, with an optimum at 40-50℃. Ker02562 was highly active at various pHs ranging from 5.0 to 13.0, with a maximum activity observed at pH 7.0-9.0. Remarkably, recombinant Ker02562 was stable in extreme alkaline environments (pH 10-13), which was much better than most other reported keratinases. Collectively, these favorable properties could make Bacillus sp. JM7 and Ker02562 attractive to be applied in the detergent formulation and feather bioconversion.
  • Aehle W. 2006. Enzymes in Industry:Products and Applications. 2nd ed. Hoboken USA:John Wiley & Sons
    Balaji S, Kumar M S, Karthikeyan R, et al. 2008. Purification and characterization of an extracellular keratinase from a hornmeal-degrading Bacillus subtilis MTCC (9102). World Journal of Microbiology and Biotechnology, 24:2741-2745, doi: 10.1007/s11274-008-9782-7
    Brandelli A. 2008. Bacterial keratinases:useful enzymes for bioprocessing agroindustrial wastes and beyond. Food and Bioprocess Technology, 1(2):105-116, doi: 10.1007/s11947-007-0025-y
    Brandelli A, Daroit D J, Riffel A. 2010. Biochemical features of microbial keratinases and their production and applications. Applied Microbiology and Biotechnology, 85(6):1735-1750, doi: 10.1007/s00253-009-2398-5
    Brandelli A, Riffel A. 2005. Production of an extracellular keratinase from Chryseobacterium sp. growing on raw feathers. Electronic Journal of Biotechnology, 8(1):35-42
    Bressollier P, Letourneau F, Urdaci M, et al. 1999. Purification and characterization of a keratinolytic serine proteinase from Streptomyces albidoflavus. Applied and Environmental Microbiology, 65(6):2570-2576
    Cao Zhangjun, Zhang Qi, Wei Dongkai, et al. 2009. Characterization of a novel Stenotrophomonas isolate with high keratinase activity and purification of the enzyme. Journal of Industrial Microbiology and Biotechnology, 36(2):181-188, doi: 10.1007/s10295-008-0469-8
    Corrêa A P F, Daroit D J, Brandelli A. 2010. Characterization of a keratinase produced by Bacillus sp. P7 isolated from an Amazonian environment. International Biodeterioration and Biodegradation, 64(1):1-6, doi: 10.1016/j.ibiod.2009.06.015
    da Gioppo N M R, Moreira-Gasparin F G, Costa A M, et al. 2009. Influence of the carbon and nitrogen sources on keratinase production by Myrothecium verrucaria in submerged and solid state cultures. Journal of Industrial Microbiology and Biotechnology, 36(5):705-711, doi: 10.1007/s10295-009-0540-0
    Delcher A L, Bratke K A, Powers E C, et al. 2007. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics, 23(6):673-679, doi: 10.1093/bioinformatics/btm009
    Farag A M, Hassan M A. 2004. Purification, characterization and immobilization of a keratinase from Aspergillus oryzae. Enzyme and Microbial Technology, 34(2):85-93, doi: 10.1016/j.enzmictec.2003.09.002
    Forgács G, Lundin M, Taherzadeh M J, et al. 2013. Pretreatment of chicken feather waste for improved biogas production. Applied Biochemistry and Biotechnology, 169(7):2016-2028, doi: 10.1007/s12010-013-0116-3
    Gao Chao, Jin Min, Yi Zhiwei, et al. 2015. Characterization of a recombinant thermostable arylsulfatase from deep-sea bacterium Flammeovirga pacifica. Journal of Microbiology and Biotechnology, 25:1894-1901, doi: 10.4014/jmb.1504.04028
    Goldstein J, Newbury D E, Echlin P, et al. 1981. Scanning Electron Microscopy and X-ray Microanalysis:a Text for Biologists, Materials Scientists, and Geologists. US:Springer
    Gong Jinsong, Wang Yue, Zhang Dandan, et al. 2015. Biochemical characterization of an extreme alkaline and surfactant-stable keratinase derived from a newly isolated actinomycete Streptomyces aureofaciens K13. RSC Advances, 5:24691-24699, doi: 10.1039/C4RA16423G
    Gradišar H, Kern S, Friedrich J. 2000. Keratinase of Doratomyces microsporus. Applied Microbiology and Biotechnology, 53(2):196-200, doi: 10.1007/s002530050008
    Gupta R, Sharma R, Beg Q K. 2013. Revisiting microbial keratinases:next generation proteases for sustainable biotechnology. Critical Reviews in Biotechnology, 33(2):216-228, doi: 10.3109/07388551.2012.685051
    Habbeche A, Saoudi B, Jaouadi B, et al. 2014. Purification and biochemical characterization of a detergent-stable keratinase from a newly thermophilic actinomycete Actinomadura keratinilytica strain Cpt29 isolated from poultry compost. Journal of Bioscience and Bioengineering, 117(4):413-421, doi: 10.1016/j.jbiosc.2013.09.006
    Jaouadi N Z, Rekik H, Badis A, et al. 2013. Biochemical and molecular characterization of a serine keratinase from Brevibacillus brevis US575 with promising keratin-biodegradation and hide-dehairing activities. PLoS One, 8(10):e76722, doi: 10.1371/journal.pone.0076722
    Jeong J H, Jeon Y D, Lee O M, et al. 2010. Characterization of a multifunctional feather-degrading Bacillus subtilis isolated from forest soil. Biodegradation, 21(6):1029-1040, doi: 10.1007/s10532-010-9363-y
    Kublanov I V, Tsiroulnikov K B, Kaliberda E N, et al. 2009. Keratinase of an anaerobic thermophilic bacterium Thermoanaerobacter sp. strain 1004-09 isolated from a hot spring in the Baikal rift zone. Microbiology, 78(1):67-75, doi: 10.1134/S0026261709010093
    Lagesen K, Hallin P, Rødland E A, et al. 2007. RNAmmer:consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Research, 35(9):3100-3108, doi: 10.1093/nar/gkm160
    Li Ruiqiang, Li Yingrui, Kristiansen K, et al. 2008. SOAP:short oligonucleotide alignment program. Bioinformatics, 24(5):713-714, doi: 10.1093/bioinformatics/btn025
    Liu Qingyang, Zhang Tiehan, Song Nan, et al. 2014. Purification and characterization of four key enzymes from a feather-degrading Bacillus subtilis from the gut of tarantula Chilobrachys guangxiensis. International Biodeterioration and Biodegradation, 96:26-32, doi: 10.1016/j.ibiod.2014.08.008
    Nam G W, Lee D W, Lee H S, et al. 2002. Native-feather degradation by Fervidobacterium islandicum AW-1, a newly isolated keratinase-producing thermophilic anaerobe. Archives of Microbiology, 178(6):538-547, doi: 10.1007/s00203-002-0489-0
    Paul T, Das A, Mandal A, et al. 2014. Production and purification of keratinase using chicken feather bioconversion by a newly isolated Aspergillus fumigatus TKF1:detection of valuable metabolites. Biomass Conversion and Biorefinery, 4(2):137-148, doi: 10.1007/s13399-013-0090-6
    Schattner P, Brooks A N, Lowe T M. 2005. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Research, 33:686-689, doi: 10.1093/nar/gki366
    Suntornsuk W, Tongjun J, Onnim P, et al. 2005. Purification and characterisation of keratinase from a thermotolerant feather-degrading bacterium. World Journal of Microbiology and Biotechnology, 21:1111-1117, doi: 10.1007/s11274-005-0078-x
    Syed D G, Lee J C, Li Wenjun, et al. 2009. Production, characterization and application of keratinase from Streptomyces gulbargensis. Bioresource Technology, 100(5):1868-1871, doi: 10.1016/j.biortech.2008.09.047
    Thys R C S, Brandelli A. 2006. Purification and properties of a keratinolytic metalloprotease from Microbacterium sp. Journal of Applied Microbiology, 101(6):1259-1268, doi: 10.1111/jam.2006.101.issue-6
    Tiwary E, Gupta R. 2010. Medium optimization for a novel 58kDa dimeric keratinase from Bacillus licheniformis ER-15:Biochemical characterization and application in feather degradation and dehairing of hides. Bioresource Technology, 101(15):6103-6110, doi: 10.1016/j.biortech.2010.02.090
    Wang Ping, Wang Qiang, Cui Li, et al. 2011. The combined use of cutinase, keratinase and protease treatments for wool bio-antifelting. Fibers and Polymers, 12(6):760-764, doi: 10.1007/s12221-011-0760-6
    Zaghloul T I. 1998. Cloned Bacillus subtilis alkaline protease (aprA) gene showing high level of keratinolytic activity. Applied Biochemistry and Biotechnology, 70(1):199-205
    Zhou Guilan, Jin Min, Cai Yaping, et al. 2015. Characterization of a thermostable and alkali-stable α-amylase from deep-sea bacterium Flammeovirga pacifica. International Journal of Biological Macromolecules, 80:676-682, doi: 10.1016/j.ijbiomac.2015.07.042
  • Relative Articles

  • Cited by

    Periodical cited type(16)

    1. Archana G. Revankar, Zabin K. Bagewadi. Keratinase from Bacillus velezensis strain ZBE1: Purification, structural characterization, immobilization and its multi-faceted applications. Journal of the Indian Chemical Society, 2025, 102(1): 101522. doi:10.1016/j.jics.2024.101522
    2. Moni Kumari, Santosh Kumar Karn, Vivek Raj. Extremophiles and Related Extremozymes: Their Structure-Function Relationship in Industrial Applications. Industrial Biotechnology, 2024, 20(6): 279. doi:10.1089/ind.2024.0029
    3. Murugan Chellapackialakshmi, Cyril Ravi. Pre-treatment of chicken feather for enhancing the keratinolytic potential of bacteria isolated from feather dumping sites. Biomass Conversion and Biorefinery, 2024. doi:10.1007/s13399-024-06439-8
    4. Zhen Wang, Yanzhen Chen, Mingchen Yan, et al. Research progress on the degradation mechanism and modification of keratinase. Applied Microbiology and Biotechnology, 2023, 107(4): 1003. doi:10.1007/s00253-023-12360-3
    5. Arijit Jana, Nikita Kakkar, Suman Kumar Halder, et al. Efficient valorization of feather waste by Bacillus cereus IIPK35 for concomitant production of antioxidant keratin hydrolysate and milk-clotting metallo-serine keratinase. Journal of Environmental Management, 2022, 324: 116380. doi:10.1016/j.jenvman.2022.116380
    6. Jing Zhang, Chang Su, Xiao-Li Kong, et al. Directed evolution driving the generation of an efficient keratinase variant to facilitate the feather degradation. Bioresources and Bioprocessing, 2022, 9(1) doi:10.1186/s40643-022-00524-4
    7. Qinyuan Ma, Ya`ning Zhang, Xue Zheng, et al. A Newly Isolated Strain Lysobacter brunescens YQ20 and Its Performance on Wool Waste Biodegradation. Frontiers in Microbiology, 2022, 13 doi:10.3389/fmicb.2022.794738
    8. U F Zuhriyah, E Susanti, Suharti. Purification of Keratinase from Bacillus sp. MD24 using Ammonium Sulfate Fractionation. IOP Conference Series: Materials Science and Engineering, 2020, 833(1): 012055. doi:10.1088/1757-899X/833/1/012055
    9. Chang Su, Jin-Song Gong, Jiufu Qin, et al. The tale of a versatile enzyme: Molecular insights into keratinase for its industrial dissemination. Biotechnology Advances, 2020, 45: 107655. doi:10.1016/j.biotechadv.2020.107655
    10. Nonso E. Nnolim, Chibuike C. Udenigwe, Anthony I. Okoh, et al. Microbial Keratinase: Next Generation Green Catalyst and Prospective Applications. Frontiers in Microbiology, 2020, 11 doi:10.3389/fmicb.2020.580164
    11. Juan De Oliveira Martinez, Guiqin Cai, Matthias Nachtschatt, et al. Challenges and Opportunities in Identifying and Characterising Keratinases for Value-Added Peptide Production. Catalysts, 2020, 10(2): 184. doi:10.3390/catal10020184
    12. Mohamed A. Emran, Shaymaa A. Ismail, Azza M. Abdel-Fattah. Valorization of feather via the microbial production of multi-applicable keratinolytic enzyme. Biocatalysis and Agricultural Biotechnology, 2020, 27: 101674. doi:10.1016/j.bcab.2020.101674
    13. Tanvir Hossain Emon, Al Hakim, Diptha Chakraborthy, et al. Kinetics, detergent compatibility and feather-degrading capability of alkaline protease from Bacillus subtilis AKAL7 and Exiguobacterium indicum AKAL11 produced with fermentation of organic municipal solid wastes. Journal of Environmental Science and Health, Part A, 2020, 55(11): 1339. doi:10.1080/10934529.2020.1794207
    14. Min Jin, Yingbao Gai, Xun Guo, et al. Properties and Applications of Extremozymes from Deep-Sea Extremophilic Microorganisms: A Mini Review. Marine Drugs, 2019, 17(12): 656. doi:10.3390/md17120656
    15. Govindan Nadar Rajivgandhi, Wen-Jun Li. Microbial Extremozymes. doi:10.1016/B978-0-12-822945-3.00004-X
    16. Mohankumar Narayanan, Debamaya Devi, Sangiliraj Kandhasamy, et al. Plant Specialized Metabolites. Reference Series in Phytochemistry, doi:10.1007/978-3-031-30037-0_54-1

    Other cited types(0)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (812) PDF downloads(385) Cited by(16)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return