TANG Limei, DONG Yanhui, CHU Fengyou, CHEN Ling, MA Weilin, LIU Yonggang. Geochemistry and age of seamounts in the West Pacific: mantle processes and petrogenetic implications[J]. Acta Oceanologica Sinica, 2019, 38(1): 71-77. doi: 10.1007/s13131-019-1371-0
Citation: TANG Limei, DONG Yanhui, CHU Fengyou, CHEN Ling, MA Weilin, LIU Yonggang. Geochemistry and age of seamounts in the West Pacific: mantle processes and petrogenetic implications[J]. Acta Oceanologica Sinica, 2019, 38(1): 71-77. doi: 10.1007/s13131-019-1371-0

Geochemistry and age of seamounts in the West Pacific: mantle processes and petrogenetic implications

doi: 10.1007/s13131-019-1371-0
  • Received Date: 2017-05-03
  • Research on seamounts provides some of the best constraints for understanding intraplate volcanism, and samples from seamounts reveal crucial evidence about the geochemical makeup of the oceanic mantle. There are still many seamounts in the West Pacific Seamount Province (WPSP) that have not been studied, meaning their ages and geochemistry remain unknown. A better understanding of these seamount trails and their evolutionary history, investigated with age and geochemistry data, will enable better understanding of the geological processes operating underneath the Pacific Ocean Plate. Here, new 40Ar/39Ar ages and trace element and Sr-Nd-Pb isotopic data for seven basalt rocks from four seamounts in the WPSP are provided. Chemically, these rocks are all Oceanic Island Alkali basalt (OIA type); analysis of olivine phenocrysts shows that the magmas experienced strong olivine fractionation and changed from olivine + plagioclase to olivine + plagioclase + clinopyroxene cotectic during their evolution. Rare earth element (REE) patterns and a spider diagram of the samples in this study show OIB (Ocean Island Basalt) like behavior. The range of 87Sr/86Sr values is from 0.704 60 to 0.706 24, the range of 206Pb/204Pb values is from 18.241 to 18.599, and the range of 143Nd/144Nd values is from 0.512 646 to 0.512 826; together, these values indicate magma sources ranging from EMI to EMⅡ. Finally, new 40Ar/39Ar age data show that these seamounts formed at ~97 and ~106 Ma, indicating that some may have undergone the same formation processes as seamounts in the eastern part of the Magellan Seamount Trail, but other seamounts likely have different origins.
  • loading
  • Anderson D L. 2002. Plate tectonics as a far-from-equilibrium self-organized system. In:Stein S, Freymueller J T, eds. Plate Boundary Zones. Washington:AGU, 411-425
    Anderson D L. 2005. The plume assumption:frequently used arguments. http://www.mantleplumes.org/FUA.html,[2016–08–10]
    Anderson D L. 2007. New Theory of the Earth. 2nd ed. Cambridge:Cambridge University Press, 384
    Chu Fengyou, Chen Jianlin, Ma Weilin, et al. 2005. Petrologic characteristics and ages of basalt in middle Pacific mountains. Marine Geology & Quaternary Geology (in Chinese), 25(4):55-59
    Chu Fengyou, Sun Guosheng, Ma Weilin, et al. 2006. Classification of seamount morphology and its evaluating significance of ferromanganese crust in the central Pacific Ocean. Acta Oceanologica Sinica, 25(2):63-70
    Clague D A, Dalrymple G B. 1989. Tectonics, geochronology, and origin of the Hawaiian-Emperor volcanic chain. In:Winterer E L, Hussong D M, Decker R W, eds. The Eastern Pacific and Hawaii. The Geological Society of America, Boulder, Colorado, USA. 188-217
    Echeverría L M, Aitken B G. 1986. Pyroclastic rocks:another manifestation of ultramafic volcanism on Gorgona Island, Colombia. Contributions to Mineralogy and Petrology, 92(4):428-436, doi: 10.1007/BF00374425
    Foulger G R. 2002. Plumes, or plate tectonic processes?. Astronomy & Geophysics, 43(6):19-23
    Foulger G R. 2010. From plate tectonics to plumes, and back again. In:Foulger G R, ed. Plates VS. Plumes:A Geological Controversy. Chichester, UK:John, Wiley & Sons, Inc.,
    Foulger G R, Natland J H. 2003. Is "hotspot" volcanism a consequence of plate tectonics?. Science, 300(5621):921-922, doi: 10.1126/science.1083376
    Francis D. 1985. The Baffin Bay lavas and the value of picrites as analogues of primary magmas. Contributions to Mineralogy and Petrology, 89(2-3):144-154, doi: 10.1007/BF00379449
    Gurenko A A, Hansteen T H, Schmincke H U. 1996. Evolution of parental magmas of Miocene shield basalts of Gran Canaria (Canary Islands):constraints from crystal, melt and fluid inclusions in minerals. Contributions to Mineralogy and Petrology, 124(3-4):422-435, doi: 10.1007/s004100050201
    Hamilton W B. 2003. An alternative earth. GSA Today, 13(11):4-12, doi: 10.1130/1052-5173(2003)013<0004:AAE>2.0.CO;2
    He Gaowen, Ma Weilin, Song Chengbing, et al. 2011. Distribution characteristics of seamount cobalt-rich ferromanganese crusts and the determination of the size of areas for exploration and exploitation. Acta Oceanologica Sinica, 30(3):63-75, doi: 10.1007/s13131-011-0120-9
    Hillier J K. 2007. Pacific seamount volcanism in space and time. Geophysical Journal International, 168(2):877-889, doi: 10.1111/gji.2007.168.issue-2
    Hirano N, Yamamoto J, Kagi H, et al. 2004. Young, olivine xenocryst-bearing alkali-basalt from the oceanward slope of the Japan Trench. Contributions to Mineralogy and Petrology, 148(1):47-54, doi: 10.1007/s00410-004-0593-z
    Huo Yingyi, Cheng Hong, Post A F, et al. 2015. Ecological functions of uncultured microorganisms in the cobalt-rich ferromanganese crust of a seamount in the central Pacific are elucidated by fosmid sequencing. Acta Oceanologica Sinica, 34(4):92-113, doi: 10.1007/s13131-015-0650-7
    Jurewicz A J G, Watson E B. 1988. Cations in olivine, Part 1:Calcium partitioning and calcium-magnesium distribution between olivines and coexisting melts, with petrologic applications. Contributions to Mineralogy and Petrology, 99(2):176-185, doi: 10.1007/BF00371459
    Koppers A A P. 2002. ArArCALC-Software for 40Ar/39Ar age calculations. Computers & Geosciences, 28(5):605-619
    Koppers A A P, Duncan R A, Steinberger B. 2004. Implications of a nonlinear 40Ar/39Ar age progression along the Louisville seamount trail for models of fixed and moving hot spots. Geochemistry, Geophysics, Geosystems, 5(6):Q06L02, doi: 10.1029/2003GC000671
    Koppers A A P, Staudigel H. 2005. Asynchronous bends in Pacific seamount trails:a case for extensional volcanism?. Science, 307(5711):904-907, doi: 10.1126/science.1107260
    Koppers A A P, Staudigel H, Christie D M, et al. 1995. Sr-Nd-Pb isotope geochemistry of leg 144 West Pacific Guyots:implications for the geochemical evolution of the "SOPITA" mantle anomaly. In:Haggerty J A, Premoli S I, Rack F, et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results. College Station, Texas. 535-545
    Koppers A A P, Staudigel H, Pringle M S, et al. 2003. Short-lived and discontinuous intraplate volcanism in the South Pacific:hot spots or extensional volcanism?. Geochemistry, Geophysics, Geosystems, 4(10):1089
    Koppers A A P, Staudigel H, Wijbrans J R, et al. 1998. The magellan seamount trail:implications for Cretaceous hotspot volcanism and absolute Pacific plate motion. Earth and Planetary Science Letters, 163(1-4):53-68, doi: 10.1016/S0012-821X(98)00175-7
    Koppers A A P, Staudigel H, Wijbrans J R. 2000. Dating crystalline groundmass separates of altered Cretaceous seamount basalts by the 40Ar/39Ar incremental heating technique. Chemical Geology, 166(1-2):139-158, doi: 10.1016/S0009-2541(99)00188-6
    Koppers A A P, Yamazaki T, Geldmacher J, et al. 2012. Limited latitudinal mantle plume motion for the Louisville hotspot. Nature Geoscience, 5(12):911-917, doi: 10.1038/ngeo1638
    Libourel G. 1999. Systematics of calcium partitioning between olivine and silicate melt:implications for melt structure and calcium content of magmatic olivines. Contributions to Mineralogy and Petrology, 136(1-2):63-80, doi: 10.1007/s004100050524
    Lincoln J M, Pringle M S, Silva I P. 1993. Early and late cretaceous volcanism and reef-building in the Marshall Islands. In:Pringle M S, Sager W W, Sliter W V, et al, eds. The Mesozoic Pacific:Geology, Tectonics, and Volcanism. The American Geophysical Union, Washington. 279-305
    Liu Wenlong, Zhang Junfeng, Liu Chujian. 2013. CPO Induced seismic anisotropy in subduction zone:antigorite vs. olivine. Acta Geologica Sinica, 87(S1):190
    Menard H W. 1964. Marine Geology of the Pacific. New York:McGraw-Hill
    Morgan W J. 1971. Convection plumes in the lower mantle. Nature, 230(5288):42-43, doi: 10.1038/230042a0
    Morgan W J. 1972. Deep mantle convection plumes and plate motions. AAPG Bulletin, 56(2):203-213
    Natland J H, Winterer E L. 2005. Fissure control on volcanic action in the Pacific. In:Foulger G R, Natland J H, Presnall D, et al, eds. Plates, Plumes, and Paradigms. Geological Society of America, Boulder. 687-710
    Nisbet E G, Cheadle M J, Arndt N T, et al. 1993. Constraining the potential temperature of the Archaean mantle:a review of the evidence from komatiites. Lithos, 230(3-4):291-307
    Révillon S, Arndt N T, Hallot E, et al. 1999. Petrogenesis of picrites from the Caribbean Plateau and the North Atlantic magmatic province. Lithos, 49(1-4):1-21, doi: 10.1016/S0024-4937(99)00038-9
    Sato H. 1977. Nickel content of basaltic magmas:identification of primary magmas and a measure of the degree of olivine fractionation. Lithos, 10(2):113-120, doi: 10.1016/0024-4937(77)90037-8
    Smith W H F, Staudigel H, Watts A B, et al. 1989. The Magellan seamounts:early Cretaceous record of the south Pacific isotopic and thermal anomaly. Journal of Geophysical Research, 94(B8):10501-10523, doi: 10.1029/JB094iB08p10501
    Staudigel H, Park K H, Pringle M, et al. 1991. The longevity of the south Pacific isotopic and thermal anomaly. Earth and Planetary Science Letters, 102(1):24-44, doi: 10.1016/0012-821X(91)90015-A
    Tarduno J, Bunge H P, Sleep N, et al. 2009. The bent Hawaiian-Emperor hotspot track:inheriting the mantle wind. Science, 324(5923):50-53, doi: 10.1126/science.1161256
    Thompson R N, Gibson S A. 2000. Transient high temperatures in mantle plume heads inferred from magnesian olivines in Phanerozoic picrites. Nature, 407(6803):502-506, doi: 10.1038/35035058
    Wang Zhengrong, Qiu Lin, Zhang Shuang, et al. 2013. The reaction kinetics between CO2-bearing fluid and olivines/Hawaiian picrites. Acta Geologica Sinica, 87(S1):967-968
    White S M. 2005. Seamounts. In:Selley R C, Cocks L R M, Plimer I R, eds. Encyclopedia of Geology. Amsterdam:Elsevier, 475-485
    Zhang Hongfu. 2005. Transformation of lithospheric mantle through peridotite-melt reaction:a case of Sino-Korean craton. Earth and Planetary Science Letters, 237(3-4):768-780, doi: 10.1016/j.epsl.2005.06.041
    Zhao Jun, Zhang Haisheng, Wu Guanghai, et al. 2014. Biomineralization of organic matter in cobalt-rich crusts from the Marcus-Wake Seamounts of the western Pacific Ocean. Acta Oceanologica Sinica, 33(12):67-74, doi: 10.1007/s13131-014-0552-0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (806) PDF downloads(377) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return