Citation: | TANG Limei, DONG Yanhui, CHU Fengyou, CHEN Ling, MA Weilin, LIU Yonggang. Geochemistry and age of seamounts in the West Pacific: mantle processes and petrogenetic implications[J]. Acta Oceanologica Sinica, 2019, 38(1): 71-77. doi: 10.1007/s13131-019-1371-0 |
Anderson D L. 2002. Plate tectonics as a far-from-equilibrium self-organized system. In:Stein S, Freymueller J T, eds. Plate Boundary Zones. Washington:AGU, 411-425
|
Anderson D L. 2005. The plume assumption:frequently used arguments. http://www.mantleplumes.org/FUA.html,[2016–08–10]
|
Anderson D L. 2007. New Theory of the Earth. 2nd ed. Cambridge:Cambridge University Press, 384
|
Chu Fengyou, Chen Jianlin, Ma Weilin, et al. 2005. Petrologic characteristics and ages of basalt in middle Pacific mountains. Marine Geology & Quaternary Geology (in Chinese), 25(4):55-59
|
Chu Fengyou, Sun Guosheng, Ma Weilin, et al. 2006. Classification of seamount morphology and its evaluating significance of ferromanganese crust in the central Pacific Ocean. Acta Oceanologica Sinica, 25(2):63-70
|
Clague D A, Dalrymple G B. 1989. Tectonics, geochronology, and origin of the Hawaiian-Emperor volcanic chain. In:Winterer E L, Hussong D M, Decker R W, eds. The Eastern Pacific and Hawaii. The Geological Society of America, Boulder, Colorado, USA. 188-217
|
Echeverría L M, Aitken B G. 1986. Pyroclastic rocks:another manifestation of ultramafic volcanism on Gorgona Island, Colombia. Contributions to Mineralogy and Petrology, 92(4):428-436, doi: 10.1007/BF00374425
|
Foulger G R. 2002. Plumes, or plate tectonic processes?. Astronomy & Geophysics, 43(6):19-23
|
Foulger G R. 2010. From plate tectonics to plumes, and back again. In:Foulger G R, ed. Plates VS. Plumes:A Geological Controversy. Chichester, UK:John, Wiley & Sons, Inc.,
|
Foulger G R, Natland J H. 2003. Is "hotspot" volcanism a consequence of plate tectonics?. Science, 300(5621):921-922, doi: 10.1126/science.1083376
|
Francis D. 1985. The Baffin Bay lavas and the value of picrites as analogues of primary magmas. Contributions to Mineralogy and Petrology, 89(2-3):144-154, doi: 10.1007/BF00379449
|
Gurenko A A, Hansteen T H, Schmincke H U. 1996. Evolution of parental magmas of Miocene shield basalts of Gran Canaria (Canary Islands):constraints from crystal, melt and fluid inclusions in minerals. Contributions to Mineralogy and Petrology, 124(3-4):422-435, doi: 10.1007/s004100050201
|
Hamilton W B. 2003. An alternative earth. GSA Today, 13(11):4-12, doi: 10.1130/1052-5173(2003)013<0004:AAE>2.0.CO;2
|
He Gaowen, Ma Weilin, Song Chengbing, et al. 2011. Distribution characteristics of seamount cobalt-rich ferromanganese crusts and the determination of the size of areas for exploration and exploitation. Acta Oceanologica Sinica, 30(3):63-75, doi: 10.1007/s13131-011-0120-9
|
Hillier J K. 2007. Pacific seamount volcanism in space and time. Geophysical Journal International, 168(2):877-889, doi: 10.1111/gji.2007.168.issue-2
|
Hirano N, Yamamoto J, Kagi H, et al. 2004. Young, olivine xenocryst-bearing alkali-basalt from the oceanward slope of the Japan Trench. Contributions to Mineralogy and Petrology, 148(1):47-54, doi: 10.1007/s00410-004-0593-z
|
Huo Yingyi, Cheng Hong, Post A F, et al. 2015. Ecological functions of uncultured microorganisms in the cobalt-rich ferromanganese crust of a seamount in the central Pacific are elucidated by fosmid sequencing. Acta Oceanologica Sinica, 34(4):92-113, doi: 10.1007/s13131-015-0650-7
|
Jurewicz A J G, Watson E B. 1988. Cations in olivine, Part 1:Calcium partitioning and calcium-magnesium distribution between olivines and coexisting melts, with petrologic applications. Contributions to Mineralogy and Petrology, 99(2):176-185, doi: 10.1007/BF00371459
|
Koppers A A P. 2002. ArArCALC-Software for 40Ar/39Ar age calculations. Computers & Geosciences, 28(5):605-619
|
Koppers A A P, Duncan R A, Steinberger B. 2004. Implications of a nonlinear 40Ar/39Ar age progression along the Louisville seamount trail for models of fixed and moving hot spots. Geochemistry, Geophysics, Geosystems, 5(6):Q06L02, doi: 10.1029/2003GC000671
|
Koppers A A P, Staudigel H. 2005. Asynchronous bends in Pacific seamount trails:a case for extensional volcanism?. Science, 307(5711):904-907, doi: 10.1126/science.1107260
|
Koppers A A P, Staudigel H, Christie D M, et al. 1995. Sr-Nd-Pb isotope geochemistry of leg 144 West Pacific Guyots:implications for the geochemical evolution of the "SOPITA" mantle anomaly. In:Haggerty J A, Premoli S I, Rack F, et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results. College Station, Texas. 535-545
|
Koppers A A P, Staudigel H, Pringle M S, et al. 2003. Short-lived and discontinuous intraplate volcanism in the South Pacific:hot spots or extensional volcanism?. Geochemistry, Geophysics, Geosystems, 4(10):1089
|
Koppers A A P, Staudigel H, Wijbrans J R, et al. 1998. The magellan seamount trail:implications for Cretaceous hotspot volcanism and absolute Pacific plate motion. Earth and Planetary Science Letters, 163(1-4):53-68, doi: 10.1016/S0012-821X(98)00175-7
|
Koppers A A P, Staudigel H, Wijbrans J R. 2000. Dating crystalline groundmass separates of altered Cretaceous seamount basalts by the 40Ar/39Ar incremental heating technique. Chemical Geology, 166(1-2):139-158, doi: 10.1016/S0009-2541(99)00188-6
|
Koppers A A P, Yamazaki T, Geldmacher J, et al. 2012. Limited latitudinal mantle plume motion for the Louisville hotspot. Nature Geoscience, 5(12):911-917, doi: 10.1038/ngeo1638
|
Libourel G. 1999. Systematics of calcium partitioning between olivine and silicate melt:implications for melt structure and calcium content of magmatic olivines. Contributions to Mineralogy and Petrology, 136(1-2):63-80, doi: 10.1007/s004100050524
|
Lincoln J M, Pringle M S, Silva I P. 1993. Early and late cretaceous volcanism and reef-building in the Marshall Islands. In:Pringle M S, Sager W W, Sliter W V, et al, eds. The Mesozoic Pacific:Geology, Tectonics, and Volcanism. The American Geophysical Union, Washington. 279-305
|
Liu Wenlong, Zhang Junfeng, Liu Chujian. 2013. CPO Induced seismic anisotropy in subduction zone:antigorite vs. olivine. Acta Geologica Sinica, 87(S1):190
|
Menard H W. 1964. Marine Geology of the Pacific. New York:McGraw-Hill
|
Morgan W J. 1971. Convection plumes in the lower mantle. Nature, 230(5288):42-43, doi: 10.1038/230042a0
|
Morgan W J. 1972. Deep mantle convection plumes and plate motions. AAPG Bulletin, 56(2):203-213
|
Natland J H, Winterer E L. 2005. Fissure control on volcanic action in the Pacific. In:Foulger G R, Natland J H, Presnall D, et al, eds. Plates, Plumes, and Paradigms. Geological Society of America, Boulder. 687-710
|
Nisbet E G, Cheadle M J, Arndt N T, et al. 1993. Constraining the potential temperature of the Archaean mantle:a review of the evidence from komatiites. Lithos, 230(3-4):291-307
|
Révillon S, Arndt N T, Hallot E, et al. 1999. Petrogenesis of picrites from the Caribbean Plateau and the North Atlantic magmatic province. Lithos, 49(1-4):1-21, doi: 10.1016/S0024-4937(99)00038-9
|
Sato H. 1977. Nickel content of basaltic magmas:identification of primary magmas and a measure of the degree of olivine fractionation. Lithos, 10(2):113-120, doi: 10.1016/0024-4937(77)90037-8
|
Smith W H F, Staudigel H, Watts A B, et al. 1989. The Magellan seamounts:early Cretaceous record of the south Pacific isotopic and thermal anomaly. Journal of Geophysical Research, 94(B8):10501-10523, doi: 10.1029/JB094iB08p10501
|
Staudigel H, Park K H, Pringle M, et al. 1991. The longevity of the south Pacific isotopic and thermal anomaly. Earth and Planetary Science Letters, 102(1):24-44, doi: 10.1016/0012-821X(91)90015-A
|
Tarduno J, Bunge H P, Sleep N, et al. 2009. The bent Hawaiian-Emperor hotspot track:inheriting the mantle wind. Science, 324(5923):50-53, doi: 10.1126/science.1161256
|
Thompson R N, Gibson S A. 2000. Transient high temperatures in mantle plume heads inferred from magnesian olivines in Phanerozoic picrites. Nature, 407(6803):502-506, doi: 10.1038/35035058
|
Wang Zhengrong, Qiu Lin, Zhang Shuang, et al. 2013. The reaction kinetics between CO2-bearing fluid and olivines/Hawaiian picrites. Acta Geologica Sinica, 87(S1):967-968
|
White S M. 2005. Seamounts. In:Selley R C, Cocks L R M, Plimer I R, eds. Encyclopedia of Geology. Amsterdam:Elsevier, 475-485
|
Zhang Hongfu. 2005. Transformation of lithospheric mantle through peridotite-melt reaction:a case of Sino-Korean craton. Earth and Planetary Science Letters, 237(3-4):768-780, doi: 10.1016/j.epsl.2005.06.041
|
Zhao Jun, Zhang Haisheng, Wu Guanghai, et al. 2014. Biomineralization of organic matter in cobalt-rich crusts from the Marcus-Wake Seamounts of the western Pacific Ocean. Acta Oceanologica Sinica, 33(12):67-74, doi: 10.1007/s13131-014-0552-0
|
1. | Rui-Peng Zhao, Hong-Yan Li, Jeffrey G. Ryan, et al. Serpentinite geochemistry documents the earliest dehydration and decarbonation of the subducting slab beneath the Mariana forearc. Earth and Planetary Science Letters, 2024, 637: 118748. doi:10.1016/j.epsl.2024.118748 | |
2. | Xun Wei, Yan Zhang, Xuefa Shi, et al. Geochronological and geochemical constraints on the petrogenesis and geodynamic process of Hemler, Vlinder, and Il’ichev seamount lavas in NW Pacific. Science China Earth Sciences, 2024, 67(6): 1856. doi:10.1007/s11430-024-1327-0 | |
3. | Xun Wei, Guo-Liang Zhang, Ji Zhang, et al. Overlapping hotspot tracks and melts from diffuse plume materials in the upper mantle generated intraplate seamount groups in the West Pacific. Earth and Planetary Science Letters, 2024, 643: 118901. doi:10.1016/j.epsl.2024.118901 | |
4. | Gyuha Hwang, Youngtak Ko, Seungjin Yang, et al. Resource abundance of cobalt-rich ferromanganese crusts in the KC-8 seamount, West Pacific. Frontiers in Earth Science, 2024, 12 doi:10.3389/feart.2024.1495673 | |
5. | Gaoxue Yang, Yongjun Li, Zhao Zhu, et al. Seamount subduction and accretion in West Junggar, NW China: A review. Geosystems and Geoenvironment, 2024, 3(2): 100074. doi:10.1016/j.geogeo.2022.100074 | |
6. | Rui-Peng Zhao, Hong-Yan Li, Jeffrey G. Ryan, et al. Geochemistry of metabasite in Mariana forearc serpentinite mudflows documents interactions between serpentinizing fluid and subducted seamount basalts. Chemical Geology, 2024, 655: 122090. doi:10.1016/j.chemgeo.2024.122090 | |
7. | Elmar Albers, John W. Shervais, Christian T. Hansen, et al. Shallow Depth, Substantial Change: Fluid-Metasomatism Causes Major Compositional Modifications of Subducted Volcanics (Mariana Forearc). Frontiers in Earth Science, 2022, 10 doi:10.3389/feart.2022.826312 | |
8. | Qian Liu, Limei Tang, Ling Chen, et al. 40Ar/39Ar Ages and Geochemistry of Seamount Basalts from the Western Pacific Province. Journal of Marine Science and Engineering, 2022, 10(1): 54. doi:10.3390/jmse10010054 | |
9. | Bin Zhao, Wenchao Lü, Gaowen He, et al. 维嘉海山沉积过程及其对西太平洋海山演化的意义. Earth Science-Journal of China University of Geosciences, 2022, 47(1): 357. doi:10.3799/dqkx.2020.291 | |
10. | Yongliang Bai, Yilin Rong, Jihong Sun, et al. Seamount age prediction machine learning model based on multiple geophysical observables: methods and applications in the Pacific Ocean. Marine Geophysical Research, 2021, 42(3) doi:10.1007/s11001-021-09451-z | |
11. | Jianghong Deng, Lipeng Zhang, He Liu, et al. Geochemistry of subducted metabasites exhumed from the Mariana forearc: Implications for Pacific seamount subduction. Geoscience Frontiers, 2021, 12(3): 101117. doi:10.1016/j.gsf.2020.12.002 | |
12. | Yuhao Liu, Guoliang Zhang, Ji Zhang, et al. Geochemical constraints on CO2-rich mantle source for the Kocebu Seamount, Magellan Seamount chain in the western Pacific. Journal of Oceanology and Limnology, 2020, 38(4): 1201. doi:10.1007/s00343-020-0013-x |