WANG Jian, WANG Zhaohui, ZHAO Jiangang. Isolation, characterization and implications of the bacterial communities associated with established cultures of Chattonella marina (Raphidophyceae) and Skeletonema costatum (Bacillariophyceae)[J]. Acta Oceanologica Sinica, 2019, 38(1): 128-135. doi: 10.1007/s13131-019-1379-5
Citation: WANG Jian, WANG Zhaohui, ZHAO Jiangang. Isolation, characterization and implications of the bacterial communities associated with established cultures of Chattonella marina (Raphidophyceae) and Skeletonema costatum (Bacillariophyceae)[J]. Acta Oceanologica Sinica, 2019, 38(1): 128-135. doi: 10.1007/s13131-019-1379-5

Isolation, characterization and implications of the bacterial communities associated with established cultures of Chattonella marina (Raphidophyceae) and Skeletonema costatum (Bacillariophyceae)

doi: 10.1007/s13131-019-1379-5
  • Received Date: 2017-11-22
  • Cultivable bacteria coexisting in the cultures of two microalgal species, Chattonella marina (Raphidophyceae) and Skeletonema costatum (diatom, Bacillariophyceae), which have been maintained in the laboratory for several years, were examined in this study. Forty-eight and thirty-four cultivable bacterial strains were isolated from different growth stages of C. marina and S. costatum cultures, respectively. A total of twelve unique bacterial phylotypes were isolated. These bacterial phylotypes belonged to Alphaproteobacteria, Gammaproteobacteria, Bacteroidetes, and Actinobacteria. Alphaproteobacteria predominated in phycospheres of both microalgae, and Rhodobacteraceae was the most common family. Bacterial phylotypes were more diversified in cultures of S. costatum than in those of C. marina. Bacterial concentrations increased remarkably after the late stationary phase of C. marina, which might account for the decline in algal cells. One phylotype of S. costatum-associated bacteria had inhibitory effects on Chaetoceros curvisetus (Bacillariophyceae). However, most bacterial phylotypes from cultures of C. marina showed significant inhibition of the growth of C. curvisetus. The results suggested that bacteria associated with C. marina might have some ecological roles in its competition with diatoms.
  • loading
  • Abby S S, Touchon M, de Jode A, et al. 2014. Bacteria in Ostreococcus tauri cultures-friends, foes or hitchhikers?. Frontiers in Microbiology, 5:505
    Amaro A M, Fuentes M S, Ogalde S R, et al. 2005. Identification and characterization of potentially algal-lytic marine bacteria strongly associated with the toxic dinoflagellate Alexandrium catenella. Journal of Eukaryotic Microbiology, 52(3):191-200, doi: 10.1111/jeu.2005.52.issue-3
    Bell W, Mitchell R. 1972. Chemotactic and growth responses of marine bacteria to algal extracellular products. The Biological Bulletin, 143(2):265-277, doi: 10.2307/1540052
    Buchan A, González J M, Moran M A. 2005. Overview of the marine Roseobacter lineage. Applied and Environmental Microbiology, 71(10):5665-5677, doi: 10.1128/AEM.71.10.5665-5677.2005
    Eilers H, Pernthaler J, Peplies J, et al. 2001. Isolation of novel pelagic bacteria from the German bight and their seasonal contributions to surface picoplankton. Applied and Environmental Microbiology, 67(11):5134-5142, doi: 10.1128/AEM.67.11.5134-5142.2001
    Fukami K, Nishijima T, Murata H, et al. 1991. Distribution of bacteria influential on the development and the decay of Gymnodinium nagasakiense red tide and their effects on algal growth. Nippon Suisan Gakkaishi, 57(12):2321-2326, doi: 10.2331/suisan.57.2321
    Gallacher S, Smith E A. 1999. Bacteria and paralytic shellfish toxins. Protist, 150(3):245-255, doi: 10.1016/S1434-4610(99)70027-1
    Goecke F, Thiel V, Wiese J, et al. 2013. Algae as an important environment for bacteria-phylogenetic relationships among new bacterial species isolated from algae. Phycologia, 52(1):14-24, doi: 10.2216/12-24.1
    Green D H, Llewellyn L E, Negri A P, et al. 2004. Phylogenetic and functional diversity of the cultivable bacterial community associated with the paralytic shellfish poisoning dinoflagellate Gymnodinium catenatum. FEMS Microbiology Ecology, 47(3):345-357, doi: 10.1016/S0168-6496(03)00298-8
    Grossart H P, Levold F, Allgaier M, et al. 2005. Marine diatom species harbour distinct bacterial communities. Environmental Microbiology, 7(6):860-873, doi: 10.1111/emi.2005.7.issue-6
    Guillard R R L. 1975. Culture of phytoplankton for feeding marine invertebrates. In:Smith W L, Chanley M H, eds. Culture of Marine Invertebrate Animals. New York:Plenum Press, 29-60
    Hold G L, Smith E A, Rappé M S, et al. 2001. Characterisation of bacterial communities associated with toxic and non-toxic dinoflagellates:Alexandrium spp. and Scrippsiella trochoidea. FEMS Microbiology Ecology, 37(2):161-173, doi: 10.1111/fem.2001.37.issue-2
    Jasti S, Sieracki M E, Poulton N J, et al. 2005. Phylogenetic diversity and specificity of bacteria closely associated with Alexandrium spp. and other phytoplankton. Applied and Environmental Microbiology, 71(7):3483-3494, doi: 10.1128/AEM.71.7.3483-3494.2005
    Kirchman D L. 2002. The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiology Ecology, 39(2):91-100
    Liu Jiqing, Lewitus A J, Kempton J W, et al. 2008. The association of algicidal bacteria and raphidophyte blooms in South Carolina brackish detention ponds. Harmful Algae, 7(2):184-193, doi: 10.1016/j.hal.2007.07.001
    Meyer N, Bigalke A, Kaulfuß A, et al. 2017. Strategies and ecological roles of algicidal bacteria. FEMS Microbiology Reviews, 41(6):880-899, doi: 10.1093/femsre/fux029
    Muyzer G, Brinkhoff T, Nübel U, et al. 1997. Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. In:Akkermans A D L, van Elsas J D, de Bruijn F J, eds. Molecular Microbial Ecology Manual. Dordrecht:Kluwer Academics, 1-27
    Park B S, Kim J H, Kim J H, et al. 2015. Dynamics of bacterial community structure during blooms of Cochlodinium polykrikoides (Gymnodiniales, Dinophyceae) in Korean coastal waters. Harmful Algae, 48:44-54, doi: 10.1016/j.hal.2015.07.004
    Park J H, Yoshinaga I, Nishikawa T, et al. 2010. Algicidal bacteria in particle-associated form and in free-living form during a diatom bloom in the Seto Inland Sea, Japan. Aquatic Microbial Ecology, 60(2):151-161, doi: 10.3354/ame01416
    Ramanan R, Kang Z, Kim B H, et al. 2015. Phycosphere bacterial diversity in green algae reveals an apparent similarity across habitats. Algal Research, 8:140-144, doi: 10.1016/j.algal.2015.02.003
    Riclea R, Gleitzmann J, Bruns H, et al. 2012. Algicidal lactones from the marine Roseobacter clade bacterium Ruegeria pomeroyi. Beilstein Journal of Organic Chemistry, 8:941-950, doi: 10.3762/bjoc.8.106
    Sapp M, Schwaderer A S, Wiltshire K H, et al. 2007. Species-specific bacterial communities in the phycosphere of microalgae? Microbial Ecology, 53(4):683-699, doi: 10.1007/s00248-006-9162-5
    Schwenk D, Nohynek L, Rischer H. 2014. Algae-bacteria association inferred by 16S rDNA similarity in established microalgae cultures. MicrobiologyOpen, 3(3):356-368, doi: 10.1002/mbo3.2014.3.issue-3
    Su Jianqiang, Yang Xiaoru, Zheng Tianling, et al. 2007. Isolation and characterization of a marine algicidal bacterium against the toxic dinoflagellate Alexandrium tamarense. Harmful Algae, 6(6):799-810, doi: 10.1016/j.hal.2007.04.004
    Teeling H, Fuchs B M, Becher D, et al. 2012. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science, 336(6081):608-611, doi: 10.1126/science.1218344
    Verity P G, Villareal T A, Smayda T J. 1988. Ecological investigations of blooms of colonial Phaeocystis pouchetti. Ⅱ. The role of life-cycle phenomena in bloom termination. Journal of Plankton Research, 10(4):749-766, doi: 10.1093/plankt/10.4.749
    Wang Jian, Wang Zhaohui, Xiong Yijun. 2014. Culturable phycosphere bacteria from different growth stages of Gyrodinium instriatum. China Environmental Science (in Chinese), 34(6):1540-547
    Wang Zhaohui, Zhao Jiangang, Zhang Yujuan, et al. 2009. Phytoplankton community structure and environmental parameters in aquaculture areas of Daya Bay, South China Sea. Journal of Environmental Sciences, 21(9):1268-1275, doi: 10.1016/S1001-0742(08)62414-6
    Wood A M, Everroad R C, Wingard L M. 2005. Measuring growth rates in microalgal cultures. In:Andersen R A, ed. Algal Culturing Techniques. San Diego:Elsevier Academic Press, 269-285
    Zubkov M V, Fuchs B M, Archer S D, et al. 2001. Linking the composition of bacterioplankton to rapid turnover of dissolved dimethylsulphoniopropionate in an algal bloom in the North Sea. Environmental Microbiology, 3(5):304-311, doi: 10.1046/j.1462-2920.2001.00196.x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (742) PDF downloads(325) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return