Citation: | Liu Mengtan, Tao Zhencheng, Zhang Ye, Yang Guang, Sun Song, Li Chaolun, Le Fengfeng. Feeding strategies of Euphausia superba in the eastern South Shetland Islands in austral summer[J]. Acta Oceanologica Sinica, 2019, 38(10): 75-83. doi: 10.1007/s13131-019-1392-8 |
Atkinson A, Meyer B, Stuübing D, et al. 2002. Feeding and energy budgets of Antarctic krill Euphausia superba at the onset of winter: Ⅱ. Juveniles and adults. Limnology and Oceanography, 47(4): 953–966
|
Clarke A. 1980. The biochemical composition of krill, Euphausia Superba dana, from South Georgia. Journal of Experimental Marine Biology and Ecology, 43(3): 221–236, doi: 10.1016/0022-0981(80)90049-0
|
Cripps G C, Atkinson A. 2000. Fatty acid composition as an indicator of carnivory in Antarctic krill, Euphausia superba. Canadian Journal of Fisheries and Aquatic Sciences, 57(S3): 31–37, doi: 10.1139/f00-167
|
Cripps G C, Watkins J L, Hill H J, et al. 1999. Fatty acid content of Antarctic krill Euphausia superba at South Georgia related to regional populations and variations in diet. Marine Ecology Progress Series, 181: 177–188, doi: 10.3354/meps181177
|
Dalsgaard J, St John M, Kattner G, et al. 2003. Fatty acid trophic markers in the pelagic marine environment. Advances in Marine Biology, 46: 225–340, doi: 10.1016/S0065-2881(03)46005-7
|
El-Sabaawi R, Dower J F, Kainz M, et al. 2009. Characterizing dietary variability and trophic positions of coastal calanoid copepods: insight from stable isotopes and fatty acids. Marine Biology, 156(3): 225–237, doi: 10.1007/s00227-008-1073-1
|
Falk-Petersen S, Hagen W, Kattner G, et al. 2000. Lipids, trophic relationships, and biodiversity in Arctic and Antarctic krill. Canadian Journal of Fisheries and Aquatic Sciences, 57(S3): 178–191, doi: 10.1139/f00-194
|
Falk-Petersen S, Sargent J R, Lønne O J, et al. 1999. Functional biodiversity of lipids in Antarctic zooplankton: calanoides acutus, Calanus propinquus, Thysanoessa macrura and Euphausia crystallorophias. Polar Biology, 21(1): 37–47, doi: 10.1007/s003000050330
|
Flexas M M, Schodlok M P, Padman L, et al. 2015. Role of tides on the formation of the Antarctic Slope Front at the Weddell-Scotia Confluence. Journal of Geophysical Research: Oceans, 120(5): 3658–3680, doi: 10.1002/2014JC010372
|
Folch J, Lees M, Sloane Stanley G H. 1957. A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry, 226(1): 497–509
|
Graham B S, Grubbs D, Holland K, et al. 2007. A rapid ontogenetic shift in the diet of juvenile yellowfin tuna from Hawaii. Marine Biology, 150(4): 647–658
|
Hagen W, Kattner G, Terbrüggen A, et al. 2001. Lipid metabolism of the Antarctic krill Euphausia superba and its ecological implications. Marine Biology, 139(1): 95–104, doi: 10.1007/s002270000527
|
Hagen W, Yoshida T, Virtue P, et al. 2007. Effect of a carnivorous diet on the lipids, fatty acids and condition of Antarctic krill, Euphausia superba. Antarctic Science, 19(2): 183–188, doi: 10.1017/S0954102007000259
|
Hamner W M. 1988. Biomechanics of filter feeding in the Antarctic krill Euphausia superba: review of past work and new observations. Journal of Crustacean Biology, 8(2): 149–163, doi: 10.2307/1548308
|
Hewitt R P, Watkins J, Naganobu M, et al. 2004. Biomass of Antarctic krill in the Scotia Sea in January/February 2000 and its use in revising an estimate of precautionary yield. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 51(12–13): 1215–1236, doi: 10.1016/S0967-0645(04)00076-1
|
Heywood K J, Naveira Garabato A C, Stevens D P, et al. 2004. On the fate of the Antarctic Slope Front and the origin of the Weddell Front. Journal of Geophysical Research: Oceans, 109(C6): C06021
|
Hofmann E E, Klinck J M, Locarnini R A, et al. 1998. Krill transport in the Scotia Sea and environs. Antarctic Science, 10(4): 406–415, doi: 10.1017/S0954102098000492
|
Ju S J, Harvey H R. 2004. Lipids as markers of nutritional condition and diet in the Antarctic krill Euphausia superba and Euphausia crystallorophias during austral winter. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 51(17–19): 2199–2214, doi: 10.1016/j.dsr2.2004.08.004
|
Kattner G, Fricke H S G. 1986. Simple gas-liquid chromatographic method for the simultaneous determination of fatty acids and alcohols in wax esters of marine organisms. Journal of Chromatography A, 361: 263–268, doi: 10.1016/S0021-9673(01)86914-4
|
Kattner G, Hagen W, Lee R F, et al. 2007. Perspectives on marine zooplankton lipids. Canadian Journal of Fisheries and Aquatic Sciences, 64(11): 1628–1639, doi: 10.1139/f07-122
|
Ko A R, Yang E J, Kim M S, et al. 2016. Trophodynamics of euphausiids in the Amundsen Sea during the austral summer by fatty acid and stable isotopic signatures. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 123: 78–85, doi: 10.1016/j.dsr2.2015.04.023
|
Lee R F, Hagen W, Kattner G. 2006. Lipid storage in marine zooplankton. Marine Ecology Progress Series, 307: 273–306, doi: 10.3354/meps307273
|
Meyer B, Fuentes V, Guerra C, et al. 2009. Physiology, growth, and development of larval krill Euphausia superba in autumn and winter in the Lazarev Sea, Antarctica. Limnology and Oceanography, 54(5): 1595–1614, doi: 10.4319/lo.2009.54.5.1595
|
Miller A K, Trivelpiece W Z. 2007. Cycles of Euphausia superba recruitment evident in the diet of Pygoscelid penguins and net trawls in the South Shetland Islands, Antarctica. Polar Biology, 30(12): 1615–1623, doi: 10.1007/s00300-007-0326-7
|
Nicol S, Constable A J, Pauly T. 2000. Estimates of circumpolar abundance of Antarctic krill based on recent acoustic density measurements. CCAMLR Science, 7: 87–99
|
Nicol S, De La Mare W K, Stolp M. 1995. The energetic cost of egg production in Antarctic krill (Euphausia superba Dana). Antarctic Science, 7(1): 25–30, doi: 10.1017/S0954102095000058
|
Park J I, Kang C K, Suh H L. 2011. Ontogenetic diet shift in the euphausiid Euphausia pacifica quantified using stable isotope analysis. Marine Ecology Progress Series, 429: 103–109, doi: 10.3354/meps09091
|
Parrish C C. 1999. Determination of total lipid, lipid classes, and fatty acids in aquatic samples. In: Arts M T, Wainman B C, eds. Lipids in Freshwater Ecosystem. New York: Springer-Verlag, 4–20
|
Phleger C F, Nelson M M, Mooney B D, et al. 2002. Erratum to: “Interannual and between species comparison of the lipids, fatty acids and sterols of Antarctic krill from the US AMLR Elephant Island survey area”: [Comp. Biochem. Physiol. B 131 (2002) 733–747]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 132(4): 819–820, doi: 10.1016/S1096-4959(02)00086-6
|
Polito M J, Reiss C S, Trivelpiece W Z, et al. 2013. Stable isotopes identify an ontogenetic niche expansion in Antarctic krill (Euphausia superba) from the South Shetland Islands, Antarctica. Marine Biology, 160(6): 1311–1323, doi: 10.1007/s00227-013-2182-z
|
Quetin L B, Ross R M, Clarke A. 1994. Krill energetics: seasonal and environmental aspects of the physiology of Euphausia superba. In: El-Sayed S Z, ed. Southern Ocean Ecology: The BIOMASS Perspective. Cambridge: Cambridge University Press, 165–184
|
Schmidt K, Atkinson A. 2016. Feeding and food processing in Antarctic krill (Euphausia superba Dana). In: Siegel V, ed. Biology and Ecology of Antarctic Krill. Cham: Springer International Publishing, 175–224
|
Schmidt K, Atkinson A, Petzke K J, et al. 2006. Protozoans as a food source for Antarctic krill, Euphausia superba: complementary insights from stomach content, fatty acids, and stable isotopes. Limnology and Oceanography, 51(5): 2409–2427, doi: 10.4319/lo.2006.51.5.2409
|
Schmidt K, Atkinson A, Pond D W, et al. 2014. Feeding and overwintering of Antarctic krill across its major habitats: the role of sea ice cover, water depth, and phytoplankton abundance. Limnology and Oceanography, 59(1): 17–36, doi: 10.4319/lo.2014.59.1.0017
|
Schmidt K, Atkinson A, Steigenberger S, et al. 2011. Seabed foraging by Antarctic krill: implications for stock assessment, bentho-pelagic coupling, and the vertical transfer of iron. Limnology and Oceanography, 56(4): 1411–1428, doi: 10.4319/lo.2011.56.4.1411
|
Schmidt K, McClelland J W, Mente E, et al. 2004. Trophic-level interpretation based on δ15N values: implications of tissue-specific fractionation and amino acid composition. Marine Ecology Progress Series, 266: 43–58, doi: 10.3354/meps266043
|
Schukat A, Auel H, Teuber L, et al. 2014. Complex trophic interactions of calanoid copepods in the Benguela upwelling system. Journal of Sea Research, 85: 186–196, doi: 10.1016/j.seares.2013.04.018
|
Smetacek V, Nicol S. 2005. Polar ocean ecosystems in a changing world. Nature, 437(7057): 362–368, doi: 10.1038/nature04161
|
Spiridonov V A. 1995. Spatial and temporal variability in reproductive timing of Antarctic krill (Euphausia superba Dana). Polar Biology, 15(3): 161–174
|
Stübing D, Hagen W. 2003. Fatty acid biomarker ratios—suitable trophic indicators in Antarctic euphausiids?. Polar Biology, 26(12): 774–782, doi: 10.1007/s00300-003-0550-8
|
Stübing D, Hagen W, Schmidt K. 2003. On the use of lipid biomarkers in marine food web analyses: an experimental case study on the Antarctic krill, Euphausia superba. Limnology and Oceanography, 48(4): 1685–1700, doi: 10.4319/lo.2003.48.4.1685
|
Suh H L, Nemoto T. 1987. Comparative morphology of filtering structure of five species of Euphausia (Euphausiacea, Crustacea) from the Antarctic Ocean. Proceedings of the NIPR Symposium on Polar Biology, 1: 72–83
|
Ter Braak C J F, Šmilauer P. 2012. Canoco Reference Manual and User’s Guide: Software for Ordination. Version 5.0. Ithaca, USA: Microcomputer Power
|
Thompson A F, Heywood K J, Thorpe S E, et al. 2009. Surface circulation at the tip of the Antarctic Peninsula from drifters. Journal of Physical Oceanography, 39(1): 3–26, doi: 10.1175/2008JPO3995.1
|
Töbe K, Meyer B, Fuentes V. 2010. Detection of zooplankton items in the stomach and gut content of larval krill, Euphausia superba, using a molecular approach. Polar Biology, 33(3): 407–414, doi: 10.1007/s00300-009-0714-2
|
Yang Guang, Li Chaolun, Guilini K, et al. 2016. Feeding strategies of four dominant copepod species in Prydz Bay, Antarctica: insights from a combined fatty acid biomarker and stable isotopic approach. Deep Sea Research Part I: Oceanographic Research Papers, 114: 55–63, doi: 10.1016/j.dsr.2016.04.016
|
Yoshida T, Virtue P, Kawaguchi S, et al. 2011. Factors determining the hatching success of Antarctic krill Euphausia superba embryo: lipid and fatty acid composition. Marine Biology, 158(10): 2313–2325, doi: 10.1007/s00227-011-1735-2
|
Zhang Ye, Li Chaolun, Liu Mengtan, et al. 2016. Abundance and structure of dominant zooplankton species in austral summer near South Shetland Islands, Antarctica. Oceanologia et Limnologia Sinica (in Chinese), 47(5): 945–953
|
Zhu Genhai. 1993. Analysis of the stomach contents of Antarctic krill, Euphausia superba Dana. Antarctic Research, 4(2): 11–20
|
Zhu Guoping, Zhang Haiting, Song Qi, et al. 2018. Inferring trophic variation for Antarctic krill (Euphausia superba) in the Antarctic Peninsula from the austral fall to early winter using stable isotope analysis. Acta Oceanologica Sinica, 37(6): 90–95, doi: 10.1007/s13131-018-1176-6
|