LIANG Changrong, SHANG Xiaodong, CHEN Guiying. The vertical heat transport of internal solitary waves over the continental slope in the northern South China Sea[J]. Acta Oceanologica Sinica, 2019, 38(3): 36-44. doi: 10.1007/s13131-019-1397-3
Citation: LIANG Changrong, SHANG Xiaodong, CHEN Guiying. The vertical heat transport of internal solitary waves over the continental slope in the northern South China Sea[J]. Acta Oceanologica Sinica, 2019, 38(3): 36-44. doi: 10.1007/s13131-019-1397-3

The vertical heat transport of internal solitary waves over the continental slope in the northern South China Sea

doi: 10.1007/s13131-019-1397-3
  • Received Date: 2017-10-20
  • An integrated analysis of internal solitary wave (ISW) observations obtained from two moorings over the continental slope in the northern South China Sea (SCS) leads to an assessment of the vertical heat transport of the ISWs. The clusters of ISW packets are phase-locked to the fortnightly cycle of the semidiurnal tide. The ISWs appear during large semidiurnal tides, and there is a period of 5-6 d when no ISWs are observed. The effect of the ISWs on the continental slope heat budget is observed. The ISWs can modify a local temperature field in which the temperature in the upper layer can be changed by O (100)℃ after the ISWs passed the mooring. Both ISW-induced diffusion and ISW-induced advection contribute to the temperature variation. The estimates imply an average vertical heat flux of 0.01 to 0.1 MW/m2 in the ISWs in the upper 500 m of the water column. The vertical heat transport ranges from 0.56 to 2.83 GJ/m2 with a mean value of 1.63 GJ/m2. The observations suggest that the vertical heat transport is proportional to the maximum vertical displacement.
  • loading
  • Alford M H, Lien R C, Simmons H, et al. 2010. Speed and evolution of nonlinear internal waves transiting the South China Sea. Journal of Physical Oceanography, 40(6):1338-1355, doi: 10.1175/2010JPO4388.1
    Alford M H, MacKinnon J A, Nash J D, et al. 2011. Energy flux and dissipation in Luzon Strait:two tales of two ridges. Journal of Physical Oceanography, 41(11):2211-2222, doi: 10.1175/JPO-D-11-073.1
    Bai Xiaolin, Liu Zhiyu, Li Xiaofeng, et al. 2014. Generation sites of internal solitary waves in the southern Taiwan Strait revealed by MODIS true-colour image observations. International Journal of Remote Sensing, 35(11-12):4086-4098, doi: 10.1080/01431161.2014.916453
    Chen Zhiwu, Xie Jieshuo, Wang Dongxiao, et al. 2014. Density stratification influences on generation of different modes internal solitary waves. Journal of Geophysical Research, 119(10):7029-7046
    Choi W, Camassa R. 1999. Fully nonlinear internal waves in a two-fluid system. Journal of Fluid Mechanics, 396:1-36, doi: 10.1017/S0022112099005820
    Egbert G D, Erofeeva S Y. 2002. Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19(2):183-204, doi: 10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
    Guo C, Chen X. 2014. A review of internal solitary wave dynamics in the northern South China Sea. Progress in Oceanography, 121:7-23, doi: 10.1016/j.pocean.2013.04.002
    Hsu M K, Liu A K, Liu Cheng. 2000. A study of internal waves in the China seas and Yellow Sea using SAR. Continental Shelf Research, 20(4-5):389-410, doi: 10.1016/S0278-4343(99)00078-3
    Inall M E, Rippeth T P, Sherwin T J. 2000. Impact of nonlinear waves on the dissipation of internal tidal energy at a shelf break. Journal of Geophysical Research, 105(C4):8687-8705, doi: 10.1029/1999JC900299
    Inall M E, Shapiro G I, Sherwin T J. 2001. Mass transport by non-linear internal waves on the Malin shelf. Continental Shelf Research, 21(13-14):1449-1472, doi: 10.1016/S0278-4343(01)00020-6
    Klymak J M, Pinkel R, Liu C T, et al. 2006. Prototypical solitons in the South China Sea. Geophysical Research Letters, 33(11):L11607, doi: 10.1029/2006GL025932
    Li Qiang, Farmer D M. 2011. The generation and evolution of nonlinear internal waves in the deep basin of the South China Sea. Journal of Physical Oceanography, 41(7):1345-1363, doi: 10.1175/2011JPO4587.1
    Lien R C, D'Asaro E A, Henyey F, et al. 2012. Trapped core formation within a shoaling nonlinear internal wave. Journal of Physical Oceanography, 42(4):511-525, doi: 10.1175/2011JPO4578.1
    Lien R C, Henyey F, Ma B, et al. 2014. Large-amplitude internal solitary waves observed in the northern South China Sea:properties and energetics. Journal of Physical Oceanography, 44(4):1095-1115, doi: 10.1175/JPO-D-13-088.1
    Lien R C, Tang T Y, Chang M H, et al. 2005. Energy of nonlinear internal waves in the South China Sea. Geophysical Research Letters, 32(5):L05615
    Liu A K, Hsu M K. 2004. Internal wave study in the South China Sea using synthetic aperture radar (SAR). International Journal of Remote Sensing, 25(7-8):1261-1264, doi: 10.1080/01431160310001592148
    Liu A K, Ramp S R, Zhao Yunhe, et al. 2004. A case study of internal solitary wave propagation during ASIAEX 2001. IEEE Journal of Oceanic Engineering, 29(4):1144-1156, doi: 10.1109/JOE.2004.841392
    Moum J N, Farmer D M, Smyth W D, et al. 2003. Structure and generation of turbulence at interfaces strained by internal solitary waves propagating shoreward over the continental shelf. Journal of Physical Oceanography, 33(10):2093-2112, doi: 10.1175/1520-0485(2003)033<2093:SAGOTA>2.0.CO;2
    Orr M H, Mignerey P C. 2003. Nonlinear internal waves in the South China Sea:observation of the conversion of depression internal waves to elevation internal waves. Journal of Geophysical Research, 108(C3):3064, doi: 10.1029/2001JC001163
    Pope S B. 2000. Turbulent Flows. Cambridge:Cambridge University Press, 91-95
    Ramp S R, Tang T Y, Duda T F, et al. 2004. Internal solitons in the northeastern South China Sea:Part I. Sources and deep water propagation. IEEE Journal of Oceanic Engineering, 29(4):1157-1181
    Ramp S R, Yang Y J, Bahr F L. 2010. Characterizing the nonlinear internal wave climate in the northeastern South China Sea. Nonlinear Processes in Geophysics, 17(5):481-498, doi: 10.5194/npg-17-481-2010
    Rice J A. 2006. Mathematical Statistics and Data Analysis. Australia:Nelson Education, 421-425
    Shroyer E L, Moum J N, Nash J D. 2010. Vertical heat flux and lateral mass transport in nonlinear internal waves. Geophysical Research Letters, 37(8):L08601
    Small J. 2001a. A nonlinear model of the shoaling and refraction of interfacial solitary waves in the ocean:Part I. Development of the model and investigations of the shoaling effect. Journal of Physical Oceanography, 31(11):3163-3183
    Small J. 2001b. A nonlinear model of the shoaling and refraction of interfacial solitary waves in the ocean:Part Ⅱ. Oblique refraction across a continental slope and propagation over a seamount. Journal of Physical Oceanography, 31(11):3184-3199
    Xu Zhenhua, Liu Kun, Yin Baoshu, et al. 2016. Long-range propagation and associated variability of internal tides in the South China Sea. Journal of Geophysical Research, 121(11):8268-8286
    Xu Zhenhua, Yin Baoshu, Hou Yijun, et al. 2010. A study of internal solitary waves observed on the continental shelf in the northwestern South China Sea. Acta Oceanologica Sinica, 29(3):18-25, doi: 10.1007/s13131-010-0033-z
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (691) PDF downloads(453) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return