LI Qun, WU Huiding, YANG Hongwei, ZHANG Zhanhai. A numerical simulation of the generation and evolution of nonlinear internal waves across the Kara Strait[J]. Acta Oceanologica Sinica, 2019, 38(5): 1-9. doi: 10.1007/s13131-019-1437-z
Citation: LI Qun, WU Huiding, YANG Hongwei, ZHANG Zhanhai. A numerical simulation of the generation and evolution of nonlinear internal waves across the Kara Strait[J]. Acta Oceanologica Sinica, 2019, 38(5): 1-9. doi: 10.1007/s13131-019-1437-z

A numerical simulation of the generation and evolution of nonlinear internal waves across the Kara Strait

doi: 10.1007/s13131-019-1437-z
  • Received Date: 2017-11-02
  • Nonlinear internal waves (NIWs) are ubiquitous around the Kara Sea, a part of the Arctic Ocean that is north of Siberia. Three hot spot sources for internal waves, one of which is the Kara Strait, have been identified based on Envisat ASAR. The generation and evolution of the NIWs through the interactions of the tide and topography across the strait is studied based on a nonhydrostatic numerical model. The model captures most wave characteristics shown by satellite data. A typical inter-packets distance on the Barents Sea side is about 25 km in summer, with a phase speed about 0.65 m/s. A northward background current may intensify the accumulation of energy during generation, but it has little influence on the other properties of the generated waves. The single internal solitary wave (ISW) structure is a special phenomenon that follows major wave trains, with a distance about 5-8 km. This wave is generated with the leading wave packets during the same tidal period. When a steady current toward the Kara Sea is included, the basic generation process is similar, but the waves toward the Kara Sea weaken and display an internal bore-like structure with smaller amplitude than in the control experiment. In winter, due to the growth of sea ice, stratification across the Kara Strait is mainly determined by the salinity, with an almost uniform temperature close to freezing. A pycnocline deepens near the middle of the water depth (Barents Sea side), and the NIWs process is not as important as the NIWs process in summer. There is no fission process during the simulation.
  • loading
  • Buijsman M C, Kanarska Y, McWilliams J C. 2010. On the generation and evolution of nonlinear internal waves in the South China Sea. Journal of Geophysical Research, 115(C2):C02012, doi: 10.1029/2009JC005275
    Chen Zhiwu, Xie Jieshuo, Wang Dongxiao, et al. 2014. Density stratification influences on generation of different modes internal solitary waves. Journal of Geophysical Research, 119(10):7029-7046, doi: 10.1002/2014JC010069
    Cushman-Roisin B, Beckers J M. 2011. Introduction to Geophysical Fluid Dynamics, Volume 101, Second Edition:Physical and Numerical Aspects. Englewood Clifts, NJ:Prentice Hall, 320
    da Silva J C B, Buijsman M C, Magalhaes J M. 2015. Internal waves on the upstream side of a large sill of the Mascarene Ridge:a comprehensive view of their generation mechanisms and evolution. Deep-Sea Research:Part I. Oceanographic Research Papers, 99:87-104, doi: 10.1016/j.dsr.2015.01.002
    Grimshaw R, Pelinovsky E, Talipova T, et al. 2010. Internal solitary waves:propagation, deformation and disintegration. Nonlinear Processes in Geophysics, 17(6):633-649, doi: 10.5194/npg-17-633-2010
    Harms I H, Karcher M J. 1999. Modeling the seasonal variability of hydrography and circulation in the Kara Sea. Journal of Geophysical Research, 104(C6):13431-13448, doi: 10.1029/1999JC900048
    IOC, IHO and BODC. 2003. Centenary Edition of the GEBCO Digital Atlas, published on CD-ROM on behalf of the Intergovernmental Oceanographic Commission and the International Hydrographic Organization as part of the General Bathymetric Chart of the Oceans. Liverpool, UK:British Oceanographic Data Centre
    Kozlov I E, Kudryavtsev V N, Zubkova E V, et al. 2015. Characteristics of short-period internal waves in the Kara Sea inferred from satellite SAR data. Izvestiya, Atmospheric and Oceanic Physics, 51(9):1073-1087, doi: 10.1134/S0001433815090121
    Kurkina O E, Talipova T G. 2011. Huge internal waves in the vicinity of the Spitsbergen Island (Barents Sea). Natural Hazards and Earth System Science, 11(3):981-986, doi: 10.5194/nhess-11-981-2011
    Lee C Y, Beardsley R C. 1974. The generation of long nonlinear internal waves in a weakly stratified shear flow. Journal of Geophysical Research, 79(3):453-462, doi: 10.1029/JC079i003p00453
    Li Qiang, Farmer D M. 2011. The generation and evolution of nonlinear internal waves in the deep basin of the South China Sea. Journal of Physical Oceanography, 41(7):1345-1363, doi: 10.1175/2011JPO4587.1
    Marshall J, Adcroft A, Hill C, et al. 1997. A finite-volume, incompressible Navier-Stokes model for studies of the ocean on parallel computers. Journal of Geophysical Research, 102(C3):5753-5766, doi: 10.1029/96JC02775
    Morozov E G, Paka V T, Bakhanov V V. 2008. Strong internal tides in the Kara Gates Strait. Geophysical Research Letters, 35(16):L16603, doi: 10.1029/2008GL033804
    Morozov E G, Parrilla-Barrera G, Velarde M G, et al. 2003. The Straits of Gibraltar and Kara Gates:a comparison of internal tides. Oceanologica Acta, 26(3):231-241, doi: 10.1016/S0399-1784(03)00023-9
    Pacanowski R C, Philander S G H. 1981. Parameterization of vertical mixing in numerical models of tropical oceans. Journal of Physical Oceanography, 11(11):1443-1451, doi: 10.1175/1520-0485(1981)011<1443:POVMIN>2.0.CO;2
    Pichon A, Morel Y, Baraille R, et al. 2013. Internal tide interactions in the Bay of Biscay:observations and modelling. Journal of Marine Systems, 109-110:S26-S44, doi: 10.1016/j.jmarsys.2011.07.003
    Rippeth T P, Lincoln B J, Yueng-Djern Lenn, et al. 2015. Tide-mediated warming of Arctic halocline by Atlantic heat fluxes over rough topography. Nature Geoscience, 8(3):191-194, doi: 10.1038/NGEO2350
    Vitousek S, Fringer O B. 2011. Physical vs. numerical dispersion in nonhydrostatic ocean modeling. Ocean Modelling, 40(1):72-86, doi: 10.1016/j.ocemod.2011.07.002
    Vlasenko V, Stashchuk N, Hutter K. 2005. Baroclinic Tides:Theoretical Modeling and Observational Evidence. Cambridge:Cambridge University Press, 372
    Vlasenko V, Stashchuk N, Hutter K, et al. 2003. Nonlinear internal waves forced by tides near the critical latitude. Deep-Sea Research:Part I. Oceanographic Research Papers, 50(3):317-338, doi: 10.1016/S0967-0637(03)00018-9
    Vlasenko V, Stashchuk N, Inall M E, et al. 2014. Tidal energy conversion in a global hot spot:On the 3-D dynamics of baroclinic tides at the Celtic Sea shelf break. Journal of Geophysical Research, 119(6):3249-3265, doi: 10.1002/2013JC009708
    Wang Gang, Qiao Fangli, Dai Dejun. 2010. A 2D-numerical modeling of the generation and propagation of internal solitary waves in the Luzon Strait. Acta Oceanologica Sinica, 29(6):1-11, doi: 10.1007/s13131-010-0071-6
    Xu Zhenhua, Liu Kun, Yin Baoshu, et al. 2016. Long-range propagation and associated variability of internal tides in the South China Sea. Journal of Geophysical Research, 121(11):8268-8286, doi: 10.1002/2016JC012105
    Xu Zhenhua, Yin Baoshu, Hou Yijun, et al. 2014. Seasonal variability and north-south asymmetry of internal tides in the deep basin west of the Luzon Strait. Journal of Marine Systems, 134:101-112, doi: 10.1016/j.jmarsys.2014.03.002
    Zhao Zhongxiang, Alford M H, Girton J B, et al. 2016. Global observations of open-ocean mode-1 M2 internal tides. Journal of Physical Oceanography, 46(6):1657-1684, doi: 10.1175/JPO-D-15-0105.1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (652) PDF downloads(433) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return