DING Yingying, ZUO Juncheng, SHAO Weizeng, SHI Jian, YUAN Xinzhe, SUN Jian, HU Jiachen, LI Xiaofeng. Wave parameters retrieval for dual-polarization C-band synthetic aperture radar using a theoretical-based algorithm under cyclonic conditions[J]. Acta Oceanologica Sinica, 2019, 38(5): 21-31. doi: 10.1007/s13131-019-1438-y
Citation: DING Yingying, ZUO Juncheng, SHAO Weizeng, SHI Jian, YUAN Xinzhe, SUN Jian, HU Jiachen, LI Xiaofeng. Wave parameters retrieval for dual-polarization C-band synthetic aperture radar using a theoretical-based algorithm under cyclonic conditions[J]. Acta Oceanologica Sinica, 2019, 38(5): 21-31. doi: 10.1007/s13131-019-1438-y

Wave parameters retrieval for dual-polarization C-band synthetic aperture radar using a theoretical-based algorithm under cyclonic conditions

doi: 10.1007/s13131-019-1438-y
  • Received Date: 2019-02-20
  • Theoretical-based ocean wave retrieval algorithms are applied by inverting a synthetic aperture radar (SAR) intensity spectrum into a wave spectrum, that has been developed based on a SAR wave mapping mechanism. In our previous studies, it was shown that the wave retrieval algorithm, named the parameterized first-guess spectrum method (PFSM), works for C-band and X-band SAR at low to moderate sea states. In this work, we investigate the performance of the PFSM algorithm when it is applied for dual-polarization c-band sentinel-1 (S-1) SAR acquired in extra wide-swath (EW) and interferometric wide-swath (IW) mode under cyclonic conditions. Strong winds are retrieved from six vertical-horizontal (VH) polarization S-1 SAR images using the c-band cross-polarization coupled-parameters ocean (C-3PO) model and then wave parameters are obtained from the image at the vertical-vertical (VV) polarization channel. significant wave height (SWH) and mean wave period (MWP) are compared with simulations from the WAVEWATCH-Ⅲ (WW3) model. The validation shows a 0.69 m root mean square error (RMSE) of SWH with a -0.01 m bias and a 0.62 s RMSE of MWP with a -0.17 s bias. Although the PFSM algorithm relies on a good quality SAR spectrum, this study confirms the applicability for wave retrieval from an S-1 SAR image. Moreover, it is found that the retrieved results have less accuracy on the right sector of cyclone eyes where swell directly affects strong wind-sea, while the PFSM algorithm works well on the left and rear sectors of cyclone eyes where the interaction of wind-sea and swell is relatively poor.
  • loading
  • Alpers W R, Bruening C. 1986. On the relative importance of motion-related contributions to the SAR imaging mechanism of ocean surface waves. IEEE Transactions on Geoscience and Remote Sensing, GE-24(6):873-885, doi: 10.1109/TGRS.1986.289702
    Alpers W, Ross D B, Rufenach C L. 1981. On the detectability of ocean surface waves by real and synthetic aperture radar. Journal of Geophysical Research, 86 (C7):6481-6498
    Bi Fan, Song Jinbao, Wu Kejian, et al. 2015. Evaluation of the simulation capability of the Wavewatch Ⅲ model for Pacific Ocean wave. Acta Oceanologica Sinica, 34(9):43-57, doi: 10.1007/s13131-015-0737-1
    Hasselmann K, Hasselmann S. 1991. On the nonlinear mapping of an ocean wave spectrum into a synthetic aperture radar image spectrum and its inversion. Journal of Geophysical Research:Oceans, 96(C6):10713-10729, doi: 10.1029/91JC00302
    He Yijun. 1999. A parametric method of retrieving ocean wave spectra from synthetic aperture radar images. Chinese Sciences Bulletin, 44(13):1218-1224, doi: 10.1007/BF02885970
    Hersbach H. 2010. Comparison of C-band scatterometer CMOD5.N equivalent neutral winds with ECMWF. Journal of Atmospheric and Oceanic Technology, 27(4):721-736, doi: 10.1175/2009JTECHO698.1
    Hwang P A. 2016. Fetch-and duration-limited nature of surface wave growth inside tropical cyclones:With applications to air-sea exchange and remote sensing. Journal of Physical Oceanography, 46(1):41-56, doi: 10.1175/JPO-D-15-0173.1
    Hwang P A, Fan Yalin. 2017. Effective fetch and duration of tropical cyclone wind fields estimated from simultaneous wind and wave measurements:Surface wave and air-sea exchange computation. Journal of Physical Oceanography, 47(2):447-470, doi: 10.1175/JPO-D-16-0180.1
    Hwang P A, Stoffelen A, van Zadelhoff G J, et al. 2015. Cross-polarization geophysical model function for C-band radar backscattering from the ocean surface and wind speed retrieval. Journal of Geophysical Research:Oceans, 120(2):893-909
    Hwang P A, Walsh E J. 2016. Azimuthal and radial variation of wind-generated surface waves inside tropical cyclones. Journal of Physical Oceanography, 46(9):2605-2621, doi: 10.1175/JPO-D-16-0051.1
    Hwang P A, Zhang Biao, Toporkov J V, et al. 2010. Comparison of composite Bragg theory and quad-polarization radar backscatter from RADARSAT-2:With applications to wave breaking and high wind retrieval. Journal of Geophysical Research:Oceans, 115(C8):C08019
    Li Xiaoming, Lehner S, Bruns T. 2011. Ocean wave integral parameter measurements using Envisat ASAR wave mode data. IEEE Transactions on Geoscience and Remote Sensing, 49(1):155-174, doi: 10.1109/TGRS.2010.2052364
    Lin Bo, Shao Weizeng, Li Xiaofeng, et al. 2017. Development and validation of an ocean wave retrieval algorithm for VV-polarization Sentinel-1 SAR data. Acta Oceanologica Sinica, 36(7):95-101, doi: 10.1007/s13131-017-1089-9
    Liu Qingxiang, Babanin A, Fan Yalin, et al. 2017. Numerical simulations of ocean surface waves under hurricane conditions:assessment of existing model performance. Ocean Modelling, 118:73-93, doi: 10.1016/j.ocemod.2017.08.005
    Liu Qingxiang, Babanin A V, Zieger S, et al. 2016. Wind and wave climate in the Arctic Ocean as observed by altimeters. Journal of Climate, 29(22):7957-7975, doi: 10.1175/JCLI-D-16-0219.1
    Lu Yiru, Zhang Biao, Perrie W, et al. 2018. A C-band geophysical model function for determining coastal wind speed using synthetic aperture radar. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(7):2417-2428, doi: 10.1109/JSTARS.2018.2836661
    Mastenbroek C, de Valk C F. 2000. A semiparametric algorithm to retrieve ocean wave spectra from synthetic aperture radar. Journal of Geophysical Research:Oceans, 105(C2):3497-3516, doi: 10.1029/1999JC900282
    Masuko H, Okamoto K, Shimada M, et al. 1986. Measurement of microwave backscattering signatures of the ocean surface using X band and Ka band airborne scatterometers. Journal of Geophysical Research:Oceans, 91(C11):13065-13083, doi: 10.1029/JC091iC11p13065
    Meissner T, Wentz F J. 2012. The emissivity of the ocean surface between 6 and 90 GHz over a large range of wind speeds and earth incidence angles. IEEE Transactions on Geoscience and Remote Sensing, 50(8):3004-3026, doi: 10.1109/TGRS.2011.2179662
    Monaldo F, Jackson C, Li Xiaofeng, et al. 2016. Preliminary evaluation of Sentinel-1A wind speed retrievals. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(6):2638-2642, doi: 10.1109/JSTARS.2015.2504324
    Mouche A, Chapron B. 2015. Global C-band Envisat, RADARSAT-2 and Sentinel-1 SAR measurements in copolarization and cross-polarization. Journal of Geophysical Research:Oceans, 120(11):7195-7207, doi: 10.1002/2015JC011149
    Mouche A A, Chapron B, Zhang Biao, et al. 2017. Combined co-and cross-polarized SAR measurements under extreme wind conditions. IEEE Transactions on Geoscience and Remote Sensing, 55(12):6746-6755, doi: 10.1109/TGRS.2017.2732508
    Quilfen Y, Chapron B, Elfouhaily T, et al. 1998. Observation of tropical cyclones by high-resolution scatterometry. Journal of Geophysical Research:Oceans, 103(C4):7767-7786, doi: 10.1029/97JC01911
    Romeiser R, Graber H C, Caruso M J, et al. 2015. A new approach to ocean wave parameter estimates from C-band ScanSAR images. IEEE Transactions on Geoscience and Remote Sensing, 53(3):1320-1345, doi: 10.1109/TGRS.2014.2337663
    Schulz-Stellenfleth J, König T, Lehner S. 2007. An empirical approach for the retrieval of integral ocean wave parameters from synthetic aperture radar data. Journal of Geophysical Research:Oceans, 112(C3):C03019
    Schulz-Stellenfleth J, Lehner S, Hoja D. 2005. A parametric scheme for the retrieval of two-dimensional ocean wave spectra from synthetic aperture radar look cross spectra. Journal of Geophysical Research:Oceans, 101(C5):C05004
    Shao Weizeng, Hu Yuyi, Yang Jingsong, et al. 2018a. An empirical algorithm to retrieve significant wave height from Sentinel-1 synthetic aperture radar imagery collected under cyclonic conditions. Remote Sensing, 10(9):1367, doi: 10.3390/rs10091367
    Shao Weizeng, Li Xiaofeng, Hwang P, et al. 2017a. Bridging the gap between cyclone wind and wave by C-band SAR measurements. Journal of Geophysical Research:Oceans, 122(8):6714-6724, doi: 10.1002/2017JC012908
    Shao Weizeng, Li Xiaofeng, Sun Jian. 2015. Ocean wave parameters retrieval from TerraSAR-X images validated against buoy measurements and model results. Remote Sensing, 7(10):12815-12828
    Shao Weizeng, Sheng Yexin, Li Huan, et al. 2018b. Analysis of wave distribution simulated by WAVEWATCH-Ⅲ model in typhoons passing Beibu Gulf, China. Atmosphere, 9(7):265, doi: 10.3390/atmos9070265
    Shao Weizeng, Sheng Yexin, Sun Jian. 2017b. Preliminary assessment of wind and wave Retrieval from Chinese Gaofen-3 SAR imagery. Sensors, 17(8):1705, doi: 10.3390/s17081705
    Shao Weizeng, Sun Jian, Guan Changlong, et al. 2014. A method for sea surface wind field retrieval from SAR image mode data. Journal of Ocean University of China, 13(2):198-204, doi: 10.1007/s11802-014-1999-5
    Shao Weizeng, Yuan Xinzhe, Sheng Yexin, et al. 2018c. Development of wind speed retrieval from cross-polarization Chinese Gaofen-3 synthetic aperture radar in typhoons. Sensors, 18(2):412, doi: 10.3390/s18020412
    Shao Weizeng, Zhu Shuai, Sun Jian, et al. 2019. Evaluation of wind retrieval from co-polarization Gaofen-3 SAR imagery around China Seas. Journal of Ocean University of China, 18(1):80-92, doi: 10.1007/s11802-019-3779-8
    Shen Hui, Perrie W, He Yijun, et al. 2014. Wind speed retrieval from VH dual-polarization RADARSAT-2 SAR images. IEEE Transactions on Geoscience and Remote Sensing, 52(9):5820-5826, doi: 10.1109/TGRS.2013.2293143
    Sheng Yexin, Shao Weizeng, Zhu Shuai, et al. 2018. Validation of significant wave height retrieval from co-polarization Chinese Gaofen-3 SAR imagery using an improved algorithm. Acta Oceanologica Sinica, 37(6):1-10, doi: 10.1007/s13131-018-1217-1
    Stoffelen A, Anderson D. 1997. Scatterometer data interpretation:Estimation and validation of the transfer function CMOD4. Journal of Geophysical Research:Oceans, 102(C3):5767-5780, doi: 10.1029/96JC02860
    Stoffelen A, Verspeek J A, Vogelzang J, et al. 2017. The CMOD7 geophysical model function for ASCAT and ERS wind retrievals. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(5):2123-2134, doi: 10.1109/JSTARS.2017.2681806
    Stopa J E, Mouche A. 2017. Significant wave heights from Sentinel-1 SAR:validation and applications. Journal of Geophysical Research:Oceans, 122(3):1827-1848, doi: 10.1002/2016JC012364
    Sun Jian, Guan Changlong. 2006. Parameterized first-guess spectrum method for retrieving directional spectrum of swell-dominated waves and huge waves from SAR images. Chinese Journal of Oceanology and Limnology, 24(1):12-20, doi: 10.1007/BF02842769
    Vachon P W, Wolfe J. 2011. C-Band cross-polarization wind speed retrieval. IEEE Geoscience and Remote Sensing Letters, 8(3):456-459, doi: 10.1109/LGRS.2010.2085417
    Voronovich A G, Zavorotny V U. 2014. Full-polarization modeling of monostatic and bistatic radar scattering from a rough sea surface. IEEE Transactions on Antennas and Propagation, 62(3):1362-1371, doi: 10.1109/TAP.2013.2295235
    Yang Xiaofeng, Li Xiaofeng, Pichel W G, et al. 2011a. Comparison of ocean surface winds from ENVISAT ASAR, MetOp ASCAT scatterometer, buoy measurements, and NOGAPS model. IEEE Transactions on Geoscience and Remote Sensing, 49(12):4743-4750, doi: 10.1109/TGRS.2011.2159802
    Yang Xiaofeng, Li Xiaofeng, Zheng Quanan, et al. 2011b. Comparison of ocean-surface winds retrieved from QuikSCAT scatterometer and Radarsat-1 SAR in offshore waters of the U.S. west coast. IEEE Geoscience and Remote Sensing Letters, 8(1):163-167, doi: 10.1109/LGRS.2010.2053345
    Young I R. 2017. A review of parametric descriptions of tropical cyclone wind-wave generation. Atmosphere, 8(10):194
    Zhang Guosheng, Li Xiaofeng, Perrie W, et al. 2017. A hurricane wind speed retrieval model for C-band RADARSAT-2 cross-polarization ScanSAR images. IEEE Transactions on Geoscience and Remote Sensing, 55(8):4766-4774, doi: 10.1109/TGRS.2017.2699622
    Zhang Lei, Liu Guoqiang, Perrie W, et al. 2018. Typhoon/Hurricane-generated wind waves inferred from SAR imagery. Remote Sensing, 10(10):1605, doi: 10.3390/rs10101605
    Zhang Biao, Perrie W. 2012. Cross-polarized synthetic aperture radar:a new potential measurement technique for hurricanes. Bulletin of the American Meteorological Society, 93(4):531-541, doi: 10.1175/BAMS-D-11-00001.1
    Zhang Lei, Yin Xiaobin, Shi Hanqing, et al. 2016. Hurricane wind speed estimation using WindSat 6 and 10 GHz brightness temperatures. Remote Sensing, 8(9):721, doi: 10.3390/rs8090721
    Zheng Kaiwen, Sun Jian, Guan Changlong, et al. 2016. Analysis of the global swell and wind sea energy distribution using WAVEWATCH Ⅲ. Advances in Meteorology, 2016:8419580
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (641) PDF downloads(335) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return