Citation: | HU Yabin, ZHANG Jie, Ma Yi, LI Xiaomin, SUN Qinpei, AN Jubai. Deep learning classification of coastal wetland hyperspectral image combined spectra and texture features: A case study of Huanghe (Yellow) River Estuary wetland[J]. Acta Oceanologica Sinica, 2019, 38(5): 142-150. doi: 10.1007/s13131-019-1445-z |
An Ni, Ma Yi, Bao Yuhai. 2016. Spectral fidelity analysis of scaling transformation of hyperspectral remote sensing image based on empirical mode decomposition. Remote Sensing Technology and Application (in Chinese), 31(2):230-238
|
Cao Linlin, Li Haitao, Han Yanshun, et al. 2016. Application of convolutional neural networks in classification of high resolution remote sensing imagery. Science of Surveying and Mapping (in Chinese), 41(9):170-175
|
Chen Yushi, Lin Zhouhan, Zhao Xing, et al. 2017. Deep learning-based classification of hyperspectral data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(6):2094-2107
|
Chubey M S, Franklin S E, Wulder M A. 2006. Object-based analysis of ikonos-2 imagery for extraction of forest inventory parameters. Photogrammetric Engineering & Remote Sensing, 72(4):383-394
|
Farabet C, Couprie C, Najman L, et al. 2013. Learning hierarchical features for scene labeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8):1915-1929, doi: 10.1109/TPAMI.2012.231
|
Freund Y. 1995. Boosting a weak learning algorithm by majority. Information and Computation, 121(2):256-285, doi: 10.1006/inco.1995.1136
|
He Y, Qian D, Ben M. 2010. Decision fusion on supervised and unsupervised classifiers for hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing Letters, 7(4):875-879
|
Hinton G, Deng Li, Yu Dong, et al. 2012. Deep neural networks for acoustic modeling in speech recognition:the shared views of four research groups. IEEE Signal Processing Magazine, 29(6):82-97, doi: 10.1109/MSP.2012.2205597
|
Hinton G E, Osindero S, Teh Y W. 2014. A fast learning algorithm for deep belief nets. Neural Computation, 18(7):1527-1554
|
Hinton G E, Salakhutdinov R R. 2006. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, doi: 10.1126/science.1127647
|
Hu Wei, Huang Yangyu, Wei Li, et al. 2015. Deep convolutional neural networks for hyperspectral image classification. Journal of Sensors, 2015:258619
|
Krizhevsky A, Sutskever I, Hinton G E. 2012. ImageNet classification with deep convolutional neural networks. In:Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada:Curran Associates Inc, 1097-1105
|
Lee H, Kwon H. 2016. Contextual deep CNN based hyperspectral classification. In:Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium. Beijing, China:IEEE
|
Li Wei, Prasad S, Fowler J E, et al. 2012. Locality-preserving dimensionality reduction and classification for hyperspectral image analysis. IEEE Transactions on Geoscience and Remote Sensing, 50(4):1185-1198, doi: 10.1109/TGRS.2011.2165957
|
Li Xiaomin, Zhang Jie, Ma Yi, et al. 2015. Research on the classification method of the hyper-spectral image based on principal component analysis and decision level fusion. Marine Sciences, 39(2):25-34
|
Licciardi G, Pacifici F, Tuia D, et al. 2009. Decision fusion for the classification of hyperspectral data:outcome of the 2008 GRS-S data fusion contest. IEEE Transactions on Geoscience and Remote Sensing, 47(11):3857-3865, doi: 10.1109/TGRS.2009.2029340
|
Mei Shaohui, Ji Jingyu, Bi Qianqian, et al. 2016. Integrating spectral and spatial information into deep convolutional Neural Networks for hyperspectral classification. In:Proceedings of 2016 International Geoscience and Remote Sensing Symposium. Beijing, China:IEEE, 5067-5070
|
Melgani F, Bruzzone L. 2004. Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42(8):1778-1790, doi: 10.1109/TGRS.2004.831865
|
Slavkovikj V, Verstockt S, De Neve W, et al. 2015. Hyperspectral image classification with convolutional neural networks. In:Proceedings of the 23rd ACM International Conference on Multimedia. Brisbane, Australia:ACM, 1159-1162
|
Sun Junjie, Ma Daxi, Ren Chunying, et al. 2013. Method of extraction of wetlands' information in nanweng river basin based on multi-temporal environment satellite images. Wetland Science (in Chinese), 11(1):60-67
|
Tarabalka Y, Benediktsson J A, Chanussot J. 2009. Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques. IEEE Transactions on Geoscience and Remote Sensing, 47(8):2973-2987, doi: 10.1109/TGRS.2009.2016214
|
Teoh S S, Bräunl T. 2012. Symmetry-based monocular vehicle detection system. Machine Vision and Applications, 23(5):831-842, doi: 10.1007/s00138-011-0355-7
|
Tian Zhuangzhuang, Zhan Ronghui, Hu Jiemin, et al. 2016. SAR ATR based on convolutional neural network. Journal of Radars (in Chinese), 5(3):320-325
|
Waibel A, Hanazawa T, Hinton G E, et al. 1989. Phoneme recognition using time-delay neural networks. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(3):328-339, doi: 10.1109/29.21701
|
Xu Yingxue, Shao Jingli, Yang Wenfeng, et al. 2006. Research on classification and change of seaside wetland around Yalujiang river estuary based on RS and GIS. Geoscience (in Chinese), 20(3):500-504
|
Xu Zhenlei, Yang Rui, Wang Xinchun, et al. 2016. Based on leaves convolutional neural network recognition algorithm. Computer Knowledge and Technology (in Chinese), 12(10):194-196
|
Yang Jingxiang, Zhao Yongqiang, Chan J C W, et al. 2016. Hyperspectral image classification using two-channel deep convolutional neural network. In:Proceedings of 2016 International Geoscience and Remote Sensing Symposium. Beijing, China:IEEE, 5079-5082
|
Yue Jun, Zhao Wenzhi, Mao Shanjun, et al. 2015. Spectral-spatial classification of hyperspectral images using deep convolutional neural networks. Remote Sensing Letters, 6(6):468-477, doi: 10.1080/2150704X.2015.1047045
|