SUN Lina, ZHANG Jie, MENG Junmin. A study of the spatial-temporal distribution and propagation characteristics of internal waves in the Andaman Sea using MODIS[J]. Acta Oceanologica Sinica, 2019, 38(7): 121-128. doi: 10.1007/s13131-019-1449-8
Citation: SUN Lina, ZHANG Jie, MENG Junmin. A study of the spatial-temporal distribution and propagation characteristics of internal waves in the Andaman Sea using MODIS[J]. Acta Oceanologica Sinica, 2019, 38(7): 121-128. doi: 10.1007/s13131-019-1449-8

A study of the spatial-temporal distribution and propagation characteristics of internal waves in the Andaman Sea using MODIS

doi: 10.1007/s13131-019-1449-8
  • Received Date: 2018-05-30
  • This paper describes investigations of the internal waves in the Andaman Sea using Moderate Resolution Imaging Spectroradiometer (MODIS) imagery over the period of June 2010 to May 2016. Results of the spatial and temporal distribution, generation sources and propagation characteristics of internal waves are presented. The statistical analysis shows that internal waves can be observed in almost the entire area of the Andaman Sea. Most internal waves are observed in the northern, central and southern regions of the Andaman Sea. A significant number of internal waves between 7°N and 9°N in the East Indian Ocean are also observed. Internal waves can be observed year-round in the Andaman Sea, while most of internal waves are observed between February and April, with a maximum frequency of 15.03% in March. The seasonal distribution of the internal waves shows that the internal waves have mostly been observed in the dry season (February to April), and fewer internal waves are observed in the rainy season (May to October). The double peak distribution for the occurrence frequency of internal waves is found. With respect to the lunar influence, more internal waves are observed after the spring tide, which implies the spring tide may play an important role in internal wave generation in the Andaman Sea. Generation sources of internal waves are explored based on the propagation characteristics of internal waves. The results indicate that six sources are located between the Andaman Islands and the Nicobar Islands, and one is located in the northern Andaman Sea. Four regions with active internal wave phenomenon in the Andaman Sea were presented during the MODIS survey, and the propagation speed of internal waves calculated based on the semidiurnal generation period is smaller than the results acquired from pairs of the images with short time intervals.
  • Alpers W, Heng Wangchen, Hock L. 1997. Observation of internal waves in the Andaman Sea by ERS SAR. In:Proceedings of 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing-A Scientific Vision for Sustainable. Singapore:IEEE, 1518-1520
    Da Silva J C B, Magalhaes J M. 2016. Internal solitons in the Andaman Sea:a new look at an old problem. In:Proceedings of SPIE 9999, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions. Edinburgh, United Kingdom:SPIE, 1-13
    Fraser N. 1998. Natural phenomena abound in the Bay of Bengal. Professional Mariner, 30:20-21
    Fraser N. 1999. Surfing an oil rig. Energy Review, 20-24
    Haury L R, Briscoe M G, Orr M H. 1979. Tidally generated internal wave packets in Massachusetts Bay. Nature, 278(5702):312-317, doi: 10.1038/278312a0
    Ho C R, Su Fengchun, Kuo N J, et al. 2009. Internal wave observations in the northern South China Sea from Satellite Ocean color imagery. In:Oceans 2009-EUROPE. Bremen, Germany:IEEE, 1-5
    Hong D B, Yang Chansu, Ouchi K. 2015. Estimation of internal wave velocity in the shallow South China Sea using single and multiple satellite images. Remote Sensing Letters, 6(6):448-457, doi: 10.1080/2150704X.2015.1034884
    Hsu M K, Hsieh C H, Ho C R, et al. 2014. Nonlinear internal waves in the Andaman Sea. Journal of Photogrammetry and Remote Sensing, 18(3):161-173
    Hyder P, Jeans D R G, Cauquil E, et al. 2005. Observations and predictability of internal solitons in the northern Andaman Sea. Applied Ocean Research, 27(1):1-11, doi: 10.1016/j.apor.2005.07.001
    Jackson C. 2007. Internal wave detection using the moderate resolution imaging spectroradiometer (MODIS). Journal of Geophysical Research, 112(C11):C11012, doi: 10.1029/2007JC004220
    Jackson C R, Apel J R. 2004. An atlas of internal solitary-like waves and their properties, 2nd edition. Alexandria, VA, USA:Global Ocean Associates, 176
    Mohanty S, Devendra Rao A. 2017. Numerical simulation of internal waves in the Andaman Sea. In:EGU General Assembly 2017. Vienna, Austria:EGU
    Osborne A R, Burch T L. 1980. Internal solitons in the Andaman Sea. Science, 208(4443):451-460, doi: 10.1126/science.208.4443.451
    Rizal S, Damm P, Wahid M A, et al. 2012. General circulation in the Malacca Strait and Andaman Sea:a numerical model study. American Journal of Environmental Sciences, 8(5):479-488, doi: 10.3844/ajessp.2012.479.488
    Shimizu K, Nakayama K. 2017. Effects of topography and Earth's rotation on the oblique interaction of internal solitary-like waves in the Andaman Sea. Journal of Geophysical Research, 122(9):7449-7465
    Stanton T P, Ostrovsky L A. 1998. Observations of highly nonlinear internal solitons over the continental shelf. Geophysical Research Letters, 25(14):2695-2698, doi: 10.1029/98GL01772
    Su Bo. 2012. Research on the influence of the nearshore ecosystems and physical process of the Andaman Sea (in Chinese)[dissertation]. Qingdao:The First Institute of Oceanography, State Oceanic Administration
    Vlasenko V, Alpers W. 2005. Generation of secondary internal waves by the interaction of an internal solitary wave with an underwater bank. Journal of Geophysical Research, 110(C2):C02019
    Xie Zhihong. 2004. Study on the source and evolution of nonlinear internal waves in the Andaman Sea with SAR and MODIS satellite data (in Chinese)[dissertation]. Keelung:Taiwan Ocean University
    Zheng Quanan, Susanto R D, Ho C R, et al. 2007. Statistical and dynamical analyses of generation mechanisms of solitary internal waves in the northern South China Sea. Journal of Geophysical Research, 112(C3):C03021
    Zhou Liying, Yang Jingsong, Wang Juan, et al. 2017. Spatio-temporal distribution of internal waves in the Andaman Sea based on satellite remote sensing. In:Proceedings of the 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics. Datong, China:IEEE, 624-628
  • Relative Articles

  • Cited by

    Periodical cited type(35)

    1. Zhe Chang, Lina Sun, Tengfei Liu, et al. Experimental study on the variation of optical remote sensing imaging characteristics of internal solitary waves with wind speed. Journal of Oceanology and Limnology, 2024, 42(2): 408. doi:10.1007/s00343-023-3014-8
    2. A Lukman, A S Atmadipoera, D Nugroho, et al. Characteristics of internal waves in the Bali Sea from Sentinel-1A data and ocean modeling. IOP Conference Series: Earth and Environmental Science, 2024, 1350(1): 012047. doi:10.1088/1755-1315/1350/1/012047
    3. Lina Sun, Yanliang Liu, Junmin Meng, et al. Internal solitary waves in the central Andaman sea observed by combining mooring data and satellite remote sensing. Continental Shelf Research, 2024, 277: 105249. doi:10.1016/j.csr.2024.105249
    4. Jiehua Cai, Wangjiang Hu, Hengqian Yan, et al. Automatic Extraction of Internal Wave From Complex Background Using Polarimetric SAR and Convolutional Neural Network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 16222. doi:10.1109/JSTARS.2024.3445604
    5. Kexiao Lu, Tao Xu, Xu Chen, et al. Relationships between internal solitary wave surface features in optical and SAR satellite images: Insights from remote sensing and laboratory. Ocean Engineering, 2024, 309: 118500. doi:10.1016/j.oceaneng.2024.118500
    6. Kan Zeng, Ruyin Lyu, Hengyu Li, et al. Studying the Internal Wave Generation Mechanism in the Northern South China Sea Using Numerical Simulation, Synthetic Aperture Radar, and In Situ Measurements. Remote Sensing, 2024, 16(8): 1440. doi:10.3390/rs16081440
    7. Zijian Cui, Weifang Jin, Tao Ding, et al. Observations of anomalously strong mode-2 internal solitary waves in the central Andaman sea by a mooring system. Deep Sea Research Part I: Oceanographic Research Papers, 2024, 208: 104300. doi:10.1016/j.dsr.2024.104300
    8. Songsong Huang, Jing Wang, Zhixin Li, et al. Generation characteristics of internal solitary waves in the Northern Andaman sea based on MODIS observations and numerical simulations. Frontiers in Marine Science, 2024, 11 doi:10.3389/fmars.2024.1472554
    9. Yuteng Ma, Junmin Meng, Lina Sun, et al. Oceanic Internal Wave Signature Extraction in the Sulu Sea by a Pixel Attention U-Net: PAU-Net. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 1. doi:10.1109/LGRS.2022.3230086
    10. Zhixin Li, Meng Zhang, Keda Liang, et al. Optical remote sensing image characteristics of large amplitude convex mode-2 internal solitary waves: an experimental study. Acta Oceanologica Sinica, 2023, 42(6): 16. doi:10.1007/s13131-022-2145-7
    11. Guozheng Yuan, Chunlin Ning, Lin Liu, et al. An Automatic Internal Wave Recognition Algorithm Based on CNN Applicable to an Ocean Data Buoy System. Journal of Marine Science and Engineering, 2023, 11(11): 2110. doi:10.3390/jmse11112110
    12. Longyu Huang, Jingsong Yang, Zetai Ma, et al. High-Frequency Observations of Oceanic Internal Waves from Geostationary Orbit Satellites. Ocean-Land-Atmosphere Research, 2023, 2 doi:10.34133/olar.0024
    13. Hao Zhang, Junmin Meng, Lina Sun, et al. Observations of Reflected Internal Solitary Waves near the Continental Shelf of the Dongsha Atoll. Journal of Marine Science and Engineering, 2022, 10(6): 763. doi:10.3390/jmse10060763
    14. Changming Dong, Guangjun Xu, Guoqing Han, et al. Recent Developments in Artificial Intelligence in Oceanography. Ocean-Land-Atmosphere Research, 2022, 2022 doi:10.34133/2022/9870950
    15. Junmin Meng, Lina Sun, Hao Zhang, et al. Remote sensing survey and research on internal solitary waves in the South China Sea-Western Pacific-East Indian Ocean (SCS-WPAC-EIND). Acta Oceanologica Sinica, 2022, 41(10): 154. doi:10.1007/s13131-022-2018-0
    16. Mingkai Tao, Chengji Xu, Lingxi Guo, et al. An Internal Waves Data Set From Sentinel‐1 Synthetic Aperture Radar Imagery and Preliminary Detection. Earth and Space Science, 2022, 9(12) doi:10.1029/2022EA002528
    17. Changtian Yu, Junmin Meng, Lina Sun, et al. Study of Sea Surface Geophysical Parameter Changes Due to Internal Solitary Waves Using a Sentinel-3 Synthetic Aperture Radar Altimeter. Remote Sensing, 2022, 14(21): 5375. doi:10.3390/rs14215375
    18. Heping Liu, Wei Yang, Hao Wei, et al. On Characteristics and Mixing Effects of Internal Solitary Waves in the Northern Yellow Sea as Revealed by Satellite and In Situ Observations. Remote Sensing, 2022, 14(15): 3660. doi:10.3390/rs14153660
    19. Jinghan Wen, Zhongbiao Chen, Yijun He. Optical flow-based method to estimate internal wave parameters from X-band marine radar images. Acta Oceanologica Sinica, 2022, 41(9): 149. doi:10.1007/s13131-022-1988-2
    20. W. Wang, Y. Gong, Z. Wang, et al. Numerical simulations of generation and propagation of internal tides in the Andaman Sea. Frontiers in Marine Science, 2022, 9 doi:10.3389/fmars.2022.1047690
    21. Zehua Wen, Li Zou, Yingjie Hu, et al. Numerical study on the surface signature of internal solitary waves. Physics of Fluids, 2022, 34(7) doi:10.1063/5.0096373
    22. Songsong Huang, Jing Wang, Kexiao Lu, et al. Effects of barotropic tides and ocean stratification on the generation and propagation of internal solitary waves in the deep south Andaman Sea. Dynamics of Atmospheres and Oceans, 2022, 100: 101329. doi:10.1016/j.dynatmoce.2022.101329
    23. Lina Sun, Jie Zhang, Junmin Meng. Study on the propagation velocity of internal solitary waves in the Andaman Sea using Terra/Aqua-MODIS remote sensing images. Journal of Oceanology and Limnology, 2021, 39(6): 2195. doi:10.1007/s00343-020-0280-6
    24. Liaqat Ali, Nageena Makhdoom, Yifan Gao, et al. Metocean Criteria for Internal Solitary Waves Obtained from Numerical Models. Water, 2021, 13(11): 1554. doi:10.3390/w13111554
    25. Kexiao Lu, Jing Wang, Meng Zhang. Study on prediction of internal solitary waves propagation in the southern Andaman Sea. Journal of Oceanography, 2021, 77(4): 607. doi:10.1007/s10872-021-00594-6
    26. Hao Zhang, Chenqing Fan, Junmin Meng, et al. Research on Internal Solitary Wave Detection and Analysis Based on Interferometric Imaging Radar Altimeter Onboard the Tiangong-2 Space Laboratory. Remote Sensing, 2021, 14(1): 174. doi:10.3390/rs14010174
    27. Xudong Zhang, Xiaofeng Li, Quanan Zheng. A Machine-Learning Model for Forecasting Internal Wave Propagation in the Andaman Sea. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 3095. doi:10.1109/JSTARS.2021.3063529
    28. Li Zou, Zehua Wen, Tiezhi Sun, et al. Experimental study on transformation and energy properties of depression internal solitary wave over a bottom step. Physics of Fluids, 2021, 33(3) doi:10.1063/5.0038875
    29. Xudong Zhang, Xiaofeng Li, Tao Zhang. Characteristics and generations of internal wave in the Sulu Sea inferred from optical satellite images. Journal of Oceanology and Limnology, 2020, 38(5): 1435. doi:10.1007/s00343-020-0046-1
    30. Xudong Zhang, Tao Zhang, Xiaofeng Li. Satellite Observation of Tansmeridional Propagating Internal Waves in the Celebes Sea. IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium, doi:10.1109/IGARSS39084.2020.9323512
    31. Mingkai Tao, Zhibin Wang, Xiaoqing Wang, et al. Classification of Geophysical Phenomena From Synthetic Aperture Radar Imagery. 2022 IEEE International Conference on Unmanned Systems (ICUS), doi:10.1109/ICUS55513.2022.9986563
    32. Yong Bai, Jeom Kee Paik. Risk Assessment and Management for Ships and Offshore Structures. doi:10.1016/B978-0-12-818746-3.00036-1
    33. Xudong Zhang, Chuyuan Zhuang, Xiaofeng Li. Observations of Internal Solitary Waves Using Altimetry Data Working in Different Modes. IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, doi:10.1109/IGARSS46834.2022.9884092
    34. Lina Sun, Jie Zhang, Junmin Meng, et al. Global Oceanic Internal Solitary Wave Detection Using SAR and MODIS Imagery. IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, doi:10.1109/IGARSS52108.2023.10283163
    35. Xudong Zhang, Tao Zhang, Xiaofeng Li. Satellite-Data-Driven Propagation Speed Model for Internal Solitary Waves in the Shallow and Deep Oceans. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, doi:10.1109/IGARSS47720.2021.9554300

    Other cited types(0)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1110) PDF downloads(277) Cited by(35)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return