Citation: | Wu Zhiyuan, Jiang Changbo, Deng Bin, Chen Jie, Liu Xiaojian. Sensitivity of WRF simulated typhoon track and intensity over the South China Sea to horizontal and vertical resolutions[J]. Acta Oceanologica Sinica, 2019, 38(7): 74-83. doi: 10.1007/s13131-019-1459-z |
Bacmeister J T, Reed K A, Hannay C, et al. 2018. Projected changes in tropical cyclone activity under future warming scenarios using a high-resolution climate model. Climatic Change, 146(3-4):547-560, doi: 10.1007/s10584-016-1750-x
|
Davis C, Wang Wei, Chen S S, et al. 2008. Prediction of landfalling hurricanes with the advanced hurricane WRF model. Monthly Weather Review, 136(6):1990-2005, doi: 10.1175/2007MWR2085.1
|
Done J M, Holland G J, Bruyère C L, et al. 2015. Modeling high-impact weather and climate:lessons from a tropical cyclone perspective. Climatic Change, 129(3-4):381-395, doi: 10.1007/s10584-013-0954-6
|
Dudhia J. 1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. Journal of the Atmospheric Sciences, 46(20):3077-3107, doi: 10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
|
Fierro A O, Rogers R F, Marks F D, et al. 2009. The impact of horizontal grid spacing on the microphysical and kinematic structures of strong tropical cyclones simulated with the WRF-ARW model. Monthly Weather Review, 137(11):3717-3743, doi: 10.1175/2009MWR2946.1
|
Gall J S, Ginis I, Lin S J, et al. 2011. Experimental tropical cyclone prediction using the GFDL 25-km-resolution global atmospheric model. Weather and Forecasting, 26(6):1008-1019, doi: 10.1175/WAF-D-10-05015.1
|
Gentry M S, Lackmann G M. 2010. Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution. Monthly Weather Review, 138(3):688-704, doi: 10.1175/2009MWR2976.1
|
Gettelman A, Bresch D N, Chen C C, et al. 2018. Projections of future tropical cyclone damage with a high-resolution global climate model. Climatic Change, 146(3-4):575-585, doi: 10.1007/s10584-017-1902-7
|
Guo Xingliang, Zhong Wei. 2017. The use of a spectral nudging technique to determine the impact of environmental factors on the track of typhoon megi (2010). Atmosphere, 8(12):257, doi: 10.3390/atmos8120257
|
Hendricks E A, Jin Yi, Moskaitis J R, et al. 2016. Numerical simulations of Typhoon Morakot (2009) using a multiply nested tropical cyclone prediction model. Weather and Forecasting, 31(2):627-645, doi: 10.1175/WAF-D-15-0016.1
|
Hong S Y, Lim J O J. 2006. The WRF single-moment 6-class microphysics scheme (WSM6). Journal of the Korean Meteorological Societys, 42(2):129-151
|
Hong S Y, Noh Y, Dudhia J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review, 134(9):2318-2341, doi: 10.1175/MWR3199.1
|
Jun S, Kang N Y, Lee W, et al. 2017. An alternative multi-model ensemble forecast for tropical cyclone tracks in the western North Pacific. Atmosphere, 8(9):174, doi: 10.3390/atmos8090174
|
Kain J S. 2004. The Kain-Fritsch convective parameterization:an update. Journal of Applied Meteorology, 43(1):170-181, doi: 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
|
Knutson T R, McBride J L, Chan J, et al. 2010. Tropical cyclones and climate change. Nature Geoscience, 3(3):157-163, doi: 10.1038/ngeo779
|
Laprise R. 1992. The euler equations of motion with hydrostatic pressure as an independent variable. Monthly Weather Review, 120(1):197-207, doi: 10.1175/1520-0493(1992)120<0197:TEEOMW>2.0.CO;2
|
Li Funing, Song Jinbao, Li Xia. 2018. A preliminary evaluation of the necessity of using a cumulus parameterization scheme in high-resolution simulations of Typhoon Haiyan (2013). Natural Hazards, 92(2):647-671, doi: 10.1007/s11069-018-3218-y
|
Manganello J V, Hodges K I, Kinter Ⅲ J L, et al. 2012. Tropical cyclone climatology in a 10-km global atmospheric GCM:toward weather-resolving climate modeling. Journal of Climate, 25(11):3867-3893, doi: 10.1175/JCLI-D-11-00346.1
|
Mlawer E J, Taubman S J, Brown P D, et al. 1997. Radiative transfer for inhomogeneous atmospheres:RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research:Atmospheres, 102(D14):16663-16682, doi: 10.1029/97JD00237
|
Rogers R, Aberson S, Black M, et al. 2006. The intensity forecasting experiment:a NOAA multiyear field program for improving tropical cyclone intensity forecasts. Bulletin of the American Meteorological Society, 87(11):1523-1537, doi: 10.1175/BAMS-87-11-1523
|
Skamarock W C, Klemp J B. 2008. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. Journal of Computational Physics, 227(7):3465-3485, doi: 10.1016/j.jcp.2007.01.037
|
Sun Yuan, Zhong Zhong, Li T, et al. 2017. Impact of ocean warming on tropical cyclone track over the western north pacific:a numerical investigation based on two case studies. Journal of Geophysical Research:Atmospheres, 122(16):8617-8630, doi: 10.1002/2017JD026959
|
Walsh K, Lavender S, Scoccimarro E, et al. 2013. Resolution dependence of tropical cyclone formation in CMIP3 and finer resolution models. Climate Dynamics, 40(3-4):585-599, doi: 10.1007/s00382-012-1298-z
|
Wang C C, Kuo H C, Chen Yuhan, et al. 2012. Effects of asymmetric latent heating on typhoon movement crossing Taiwan:the case of Morakot (2009) with extreme rainfall. Journal of the Atmospheric Sciences, 69(11):3172-3196, doi: 10.1175/JAS-D-11-0346.1
|
Wang Hui, Wang Yuqing. 2014. A numerical study of Typhoon Megi (2010). Part I:rapid intensification. Monthly Weather Review, 142(1):29-48, doi: 10.1175/MWR-D-13-00070.1
|
Wang Y, Wu C C. 2004. Current understanding of tropical cyclone structure and intensity changes-a review. Meteorology and Atmospheric Physics, 87(4):257-278, doi: 10.1007/s00703-003-0055-6
|
Weisman M L, Skamarock W C, Klemp J B. 1997. The resolution dependence of explicitly modeled convective systems. Monthly Weather Review, 125(4):527-548, doi: 10.1175/1520-0493(1997)125<0527:TRDOEM>2.0.CO;2
|
Weng C H, Hsu H H. 2017. Intraseasonal oscillation enhancing C5 typhoon occurrence over the tropical western North Pacific. Geophysical Research Letters, 44(7):3339-3345, doi: 10.1002/2017GL072743
|
Wessel P, Smith W H F. 1996. A global, self-consistent, hierarchical, high-resolution shoreline database. Journal of Geophysical Research:Solid Earth, 101(B4):8741-8743, doi: 10.1029/96JB00104
|
Wu Zhiyuan, Jiang Changbo, Chen Jie, et al. 2019a. Three-dimensional temperature field change in the south China Sea during typhoon Kai-tak (1213) based on a fully coupled atmosphere-wave-ocean model. Water, 11(1):140, doi: 10.3390/w11010140
|
Wu Zhiyuan, Jiang Changbo, Deng Bin, et al. 2018. Evaluation of numerical wave model for typhoon wave simulation in South China Sea. Water Science and Engineering, 11(3):229-235, doi: 10.1016/j.wse.2018.09.001
|
Wu Zhiyuan, Jiang Changbo, Deng Bin, et al. 2019b. Numerical investigation of Typhoon Kai-tak (1213) using a mesoscale coupled WRF-ROMS model. Ocean Engineering, 175:1-15, doi: 10.1016/j.oceaneng.2019.01.053
|
Wu Zhiyuan, Jiang Changbo, Mack C, et al. 2019c. Hybrid improved empirical mode decomposition and BP neural network model for the prediction of sea surface temperature. Ocean Science, 15(2):349-360, doi: 10.5194/os-15-349-2019
|
1. | Dong Jiang, Bigui Huang, Qingsheng Miao, et al. Typhoon wind and wave numerical forecasting optimization in the South China Sea based on observation data. Natural Hazards, 2025. doi:10.1007/s11069-025-07126-1 | |
2. | Changqing Meng, Zhihan Hu, Yuankun Wang, et al. A forecasting method for corrected numerical weather prediction precipitation based on modal decomposition and coupling of multiple intelligent algorithms. Meteorology and Atmospheric Physics, 2024, 136(5) doi:10.1007/s00703-024-01030-2 | |
3. | Zhi-yuan Wu, Kai Gao, Jie Chen, et al. Typhoon-Induced Ocean Waves and Stokes Drift: A Case Study of Typhoon Mangkhut (2018). China Ocean Engineering, 2024, 38(4): 711. doi:10.1007/s13344-024-0056-4 | |
4. | Seyyed Shahabaddin Hosseini Dehshiri, Bahar Firoozabadi. A grid independence study to select computational parameters in dust storm prediction models: A sensitive analysis. Urban Climate, 2023, 49: 101534. doi:10.1016/j.uclim.2023.101534 | |
5. | Seyyed Shahabaddin Hosseini Dehshiri, Bahar Firoozabadi. A multi-objective framework to select numerical options in air quality prediction models: A case study on dust storm modeling. Science of The Total Environment, 2023, 863: 160681. doi:10.1016/j.scitotenv.2022.160681 | |
6. | Huiyan Xu, Xiaofan Li, Jinfang Yin, et al. Microphysics affect the sensitivities of rainfall to different horizontal-resolution simulations: Evidence from a case study of the Weather Research and Forecasting model runs. Atmospheric Research, 2023, 296: 107022. doi:10.1016/j.atmosres.2023.107022 | |
7. | Rafaela Jane Delfino, Gerry Bagtasa, Kevin Hodges, et al. Sensitivity of simulating Typhoon Haiyan (2013) using WRF: the role of cumulus convection, surface flux parameterizations, spectral nudging, and initial and boundary conditions. Natural Hazards and Earth System Sciences, 2022, 22(10): 3285. doi:10.5194/nhess-22-3285-2022 | |
8. | Anle Mu, Zebo Huang, Anbang Liu, et al. Bluff body vortex-induced vibration control of floating wind turbines based on a novel intelligent robust control algorithm. Physics of Fluids, 2022, 34(11) doi:10.1063/5.0121829 | |
9. | Yasmin Kaore Lago Kitagawa, Taciana Toledo de Almeida Albuquerque, Prashant Kumar, et al. Coastal-urban meteorology: A sensitivity study using the WRF-urban model. Urban Climate, 2022, 44: 101185. doi:10.1016/j.uclim.2022.101185 | |
10. | Tomoki SHIRAI, Taro ARIKAWA. IMPACTS OF WRF CONFIGURATION IN TYPHOON FORECASTS AS AN EXTERNAL FORCE OF STORM SURGE SIMULATIONS. Journal of Japan Society of Civil Engineers, Ser. B2 (Coastal Engineering), 2022, 78(2): I_199. doi:10.2208/kaigan.78.2_I_199 | |
11. | Zi Yin, Qing Dong, Kunsheng Xiang, et al. Spatio-Temporal Characteristics of the Indo-Pacific Warm Pool and the Corresponding Rain Pool. Sustainability, 2022, 14(17): 10841. doi:10.3390/su141710841 | |
12. | Tomoki Shirai, Yota Enomoto, Masashi Watanabe, et al. Sensitivity analysis of the physics options in the Weather Research and Forecasting model for typhoon forecasting in Japan and its impacts on storm surge simulations. Coastal Engineering Journal, 2022, 64(4): 506. doi:10.1080/21664250.2022.2124040 | |
13. | Zhiyuan Wu, Jie Chen, Changbo Jiang, et al. Simulation of extreme waves using coupled atmosphere-wave modeling system over the South China Sea. Ocean Engineering, 2021, 221: 108531. doi:10.1016/j.oceaneng.2020.108531 | |
14. | Ki-Song Pak, Kum-Ryong Jo. Effect of microphysical schemes on simulation of a rainfall process in the central parts of the Democratic People's Republic of Korea. Meteorology and Atmospheric Physics, 2021, 133(4): 1159. doi:10.1007/s00703-021-00801-5 | |
15. | Chih-Chiang Wei. Development of Stacked Long Short-Term Memory Neural Networks with Numerical Solutions for Wind Velocity Predictions. Advances in Meteorology, 2020, 2020: 1. doi:10.1155/2020/5462040 | |
16. | Xiaojian Liu, Cheng Liu, Xiaowei Zhu, et al. 3D Modeling and Mechanism Analysis of Breaking Wave-Induced Seabed Scour around Monopile. Mathematical Problems in Engineering, 2020, 2020: 1. doi:10.1155/2020/1647640 | |
17. | Zhiyuan Wu, Jie Chen, Changbo Jiang, et al. Numerical investigation of Typhoon Kai-tak (1213) using a mesoscale coupled WRF-ROMS model — Part Ⅱ: Wave effects. Ocean Engineering, 2020, 196: 106805. doi:10.1016/j.oceaneng.2019.106805 | |
18. | Xiaojian Liu, Qisong Wang, Cheng Liu, et al. Wind Field Reconstruction and Analysis of Super Typhoon Mangkhut (1822). Journal of Coastal Research, 2020, 99(sp1): 151. doi:10.2112/SI99-022.1 | |
19. | Zhiyuan Wu, Changbo Jiang, Mack Conde, et al. The long-term spatiotemporal variability of sea surface temperature in the northwest Pacific and China offshore. Ocean Science, 2020, 16(1): 83. doi:10.5194/os-16-83-2020 | |
20. | Zhiyuan Wu, Naire Mohamad Alshdaifat. Simulation of Marine Weather during an Extreme Rainfall Event: A Case Study of a Tropical Cyclone. Hydrology, 2019, 6(2): 42. doi:10.3390/hydrology6020042 | |
21. | Mincheol Moon, Kyung-Ja Ha. Effect of Typhoon-Generated Cold Wake on the Subsequent Typhoon Tembin and Its Sensitivity to Horizontal Resolutions. Atmosphere, 2019, 10(11): 644. doi:10.3390/atmos10110644 | |
22. | Chih-Chiang Wei. Study on Wind Simulations Using Deep Learning Techniques during Typhoons: A Case Study of Northern Taiwan. Atmosphere, 2019, 10(11): 684. doi:10.3390/atmos10110684 | |
23. | Tomoki Shirai, Taro Arikawa. Proceedings of the 11th International Conference on Asian and Pacific Coasts. Lecture Notes in Civil Engineering, doi:10.1007/978-981-99-7409-2_30 | |
24. | Zhiyuan Wu, Mack Conde. Current Topics in Tropical Cyclone Research. doi:10.5772/intechopen.90620 |