Citation: | Wu Zhiyuan, Jiang Changbo, Deng Bin, Chen Jie, Liu Xiaojian. Sensitivity of WRF simulated typhoon track and intensity over the South China Sea to horizontal and vertical resolutions[J]. Acta Oceanologica Sinica, 2019, 38(7): 74-83. doi: 10.1007/s13131-019-1459-z |
Bacmeister J T, Reed K A, Hannay C, et al. 2018. Projected changes in tropical cyclone activity under future warming scenarios using a high-resolution climate model. Climatic Change, 146(3-4):547-560, doi: 10.1007/s10584-016-1750-x
|
Davis C, Wang Wei, Chen S S, et al. 2008. Prediction of landfalling hurricanes with the advanced hurricane WRF model. Monthly Weather Review, 136(6):1990-2005, doi: 10.1175/2007MWR2085.1
|
Done J M, Holland G J, Bruyère C L, et al. 2015. Modeling high-impact weather and climate:lessons from a tropical cyclone perspective. Climatic Change, 129(3-4):381-395, doi: 10.1007/s10584-013-0954-6
|
Dudhia J. 1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. Journal of the Atmospheric Sciences, 46(20):3077-3107, doi: 10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
|
Fierro A O, Rogers R F, Marks F D, et al. 2009. The impact of horizontal grid spacing on the microphysical and kinematic structures of strong tropical cyclones simulated with the WRF-ARW model. Monthly Weather Review, 137(11):3717-3743, doi: 10.1175/2009MWR2946.1
|
Gall J S, Ginis I, Lin S J, et al. 2011. Experimental tropical cyclone prediction using the GFDL 25-km-resolution global atmospheric model. Weather and Forecasting, 26(6):1008-1019, doi: 10.1175/WAF-D-10-05015.1
|
Gentry M S, Lackmann G M. 2010. Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution. Monthly Weather Review, 138(3):688-704, doi: 10.1175/2009MWR2976.1
|
Gettelman A, Bresch D N, Chen C C, et al. 2018. Projections of future tropical cyclone damage with a high-resolution global climate model. Climatic Change, 146(3-4):575-585, doi: 10.1007/s10584-017-1902-7
|
Guo Xingliang, Zhong Wei. 2017. The use of a spectral nudging technique to determine the impact of environmental factors on the track of typhoon megi (2010). Atmosphere, 8(12):257, doi: 10.3390/atmos8120257
|
Hendricks E A, Jin Yi, Moskaitis J R, et al. 2016. Numerical simulations of Typhoon Morakot (2009) using a multiply nested tropical cyclone prediction model. Weather and Forecasting, 31(2):627-645, doi: 10.1175/WAF-D-15-0016.1
|
Hong S Y, Lim J O J. 2006. The WRF single-moment 6-class microphysics scheme (WSM6). Journal of the Korean Meteorological Societys, 42(2):129-151
|
Hong S Y, Noh Y, Dudhia J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review, 134(9):2318-2341, doi: 10.1175/MWR3199.1
|
Jun S, Kang N Y, Lee W, et al. 2017. An alternative multi-model ensemble forecast for tropical cyclone tracks in the western North Pacific. Atmosphere, 8(9):174, doi: 10.3390/atmos8090174
|
Kain J S. 2004. The Kain-Fritsch convective parameterization:an update. Journal of Applied Meteorology, 43(1):170-181, doi: 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
|
Knutson T R, McBride J L, Chan J, et al. 2010. Tropical cyclones and climate change. Nature Geoscience, 3(3):157-163, doi: 10.1038/ngeo779
|
Laprise R. 1992. The euler equations of motion with hydrostatic pressure as an independent variable. Monthly Weather Review, 120(1):197-207, doi: 10.1175/1520-0493(1992)120<0197:TEEOMW>2.0.CO;2
|
Li Funing, Song Jinbao, Li Xia. 2018. A preliminary evaluation of the necessity of using a cumulus parameterization scheme in high-resolution simulations of Typhoon Haiyan (2013). Natural Hazards, 92(2):647-671, doi: 10.1007/s11069-018-3218-y
|
Manganello J V, Hodges K I, Kinter Ⅲ J L, et al. 2012. Tropical cyclone climatology in a 10-km global atmospheric GCM:toward weather-resolving climate modeling. Journal of Climate, 25(11):3867-3893, doi: 10.1175/JCLI-D-11-00346.1
|
Mlawer E J, Taubman S J, Brown P D, et al. 1997. Radiative transfer for inhomogeneous atmospheres:RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research:Atmospheres, 102(D14):16663-16682, doi: 10.1029/97JD00237
|
Rogers R, Aberson S, Black M, et al. 2006. The intensity forecasting experiment:a NOAA multiyear field program for improving tropical cyclone intensity forecasts. Bulletin of the American Meteorological Society, 87(11):1523-1537, doi: 10.1175/BAMS-87-11-1523
|
Skamarock W C, Klemp J B. 2008. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. Journal of Computational Physics, 227(7):3465-3485, doi: 10.1016/j.jcp.2007.01.037
|
Sun Yuan, Zhong Zhong, Li T, et al. 2017. Impact of ocean warming on tropical cyclone track over the western north pacific:a numerical investigation based on two case studies. Journal of Geophysical Research:Atmospheres, 122(16):8617-8630, doi: 10.1002/2017JD026959
|
Walsh K, Lavender S, Scoccimarro E, et al. 2013. Resolution dependence of tropical cyclone formation in CMIP3 and finer resolution models. Climate Dynamics, 40(3-4):585-599, doi: 10.1007/s00382-012-1298-z
|
Wang C C, Kuo H C, Chen Yuhan, et al. 2012. Effects of asymmetric latent heating on typhoon movement crossing Taiwan:the case of Morakot (2009) with extreme rainfall. Journal of the Atmospheric Sciences, 69(11):3172-3196, doi: 10.1175/JAS-D-11-0346.1
|
Wang Hui, Wang Yuqing. 2014. A numerical study of Typhoon Megi (2010). Part I:rapid intensification. Monthly Weather Review, 142(1):29-48, doi: 10.1175/MWR-D-13-00070.1
|
Wang Y, Wu C C. 2004. Current understanding of tropical cyclone structure and intensity changes-a review. Meteorology and Atmospheric Physics, 87(4):257-278, doi: 10.1007/s00703-003-0055-6
|
Weisman M L, Skamarock W C, Klemp J B. 1997. The resolution dependence of explicitly modeled convective systems. Monthly Weather Review, 125(4):527-548, doi: 10.1175/1520-0493(1997)125<0527:TRDOEM>2.0.CO;2
|
Weng C H, Hsu H H. 2017. Intraseasonal oscillation enhancing C5 typhoon occurrence over the tropical western North Pacific. Geophysical Research Letters, 44(7):3339-3345, doi: 10.1002/2017GL072743
|
Wessel P, Smith W H F. 1996. A global, self-consistent, hierarchical, high-resolution shoreline database. Journal of Geophysical Research:Solid Earth, 101(B4):8741-8743, doi: 10.1029/96JB00104
|
Wu Zhiyuan, Jiang Changbo, Chen Jie, et al. 2019a. Three-dimensional temperature field change in the south China Sea during typhoon Kai-tak (1213) based on a fully coupled atmosphere-wave-ocean model. Water, 11(1):140, doi: 10.3390/w11010140
|
Wu Zhiyuan, Jiang Changbo, Deng Bin, et al. 2018. Evaluation of numerical wave model for typhoon wave simulation in South China Sea. Water Science and Engineering, 11(3):229-235, doi: 10.1016/j.wse.2018.09.001
|
Wu Zhiyuan, Jiang Changbo, Deng Bin, et al. 2019b. Numerical investigation of Typhoon Kai-tak (1213) using a mesoscale coupled WRF-ROMS model. Ocean Engineering, 175:1-15, doi: 10.1016/j.oceaneng.2019.01.053
|
Wu Zhiyuan, Jiang Changbo, Mack C, et al. 2019c. Hybrid improved empirical mode decomposition and BP neural network model for the prediction of sea surface temperature. Ocean Science, 15(2):349-360, doi: 10.5194/os-15-349-2019
|