Wu Zhiyuan, Jiang Changbo, Deng Bin, Chen Jie, Liu Xiaojian. Sensitivity of WRF simulated typhoon track and intensity over the South China Sea to horizontal and vertical resolutions[J]. Acta Oceanologica Sinica, 2019, 38(7): 74-83. doi: 10.1007/s13131-019-1459-z
Citation: Wu Zhiyuan, Jiang Changbo, Deng Bin, Chen Jie, Liu Xiaojian. Sensitivity of WRF simulated typhoon track and intensity over the South China Sea to horizontal and vertical resolutions[J]. Acta Oceanologica Sinica, 2019, 38(7): 74-83. doi: 10.1007/s13131-019-1459-z

Sensitivity of WRF simulated typhoon track and intensity over the South China Sea to horizontal and vertical resolutions

doi: 10.1007/s13131-019-1459-z
  • Received Date: 2019-01-26
  • To determine the grid resolutions of the WRF model in the typhoon simulation, some sensitivity analysis of horizontal and vertical resolutions in different conditions has been carried out. Different horizontal resolutions (5, 10, 20, 30 km), nesting grids (15 and 5 km), different vertical resolutions (35-layers, 28-layers, 20-layers) and different top maximum pressures (1 000, 2 000, 3 500, 5 000 Pa) had been used in the mesoscale numerical model WRF to simulate the Typhoon Kai-tak. The simulation results of typhoon track, wind speed and sea level pressure at different horizontal and vertical resolutions have been compared and analyzed. The horizontal and vertical resolutions of the model have limited effect on the simulation effect of the typhoon track. Different horizontal and vertical resolutions have obvious effects on typhoon strength (defined by wind speed) and intensity (defined by sea level pressure, SLP), especially for sea level pressure. The typhoon intensity simulated by the high-resolution model is closer to the real situation and the nesting grids can improve computational accuracy and efficiency. The simulation results affected by vertical resolution using 35-layers is better than the simulation results using 20-layers and 28-layers simulations. Through comparison and analysis, the horizontal and vertical resolutions of WRF model are finally determined as follows:the two-way nesting grid of 15 and 5 km is comprehensively determined, and the vertical layers is 35-layers, the top maximum pressure is 2 000 Pa.
  • loading
  • Bacmeister J T, Reed K A, Hannay C, et al. 2018. Projected changes in tropical cyclone activity under future warming scenarios using a high-resolution climate model. Climatic Change, 146(3-4):547-560, doi: 10.1007/s10584-016-1750-x
    Davis C, Wang Wei, Chen S S, et al. 2008. Prediction of landfalling hurricanes with the advanced hurricane WRF model. Monthly Weather Review, 136(6):1990-2005, doi: 10.1175/2007MWR2085.1
    Done J M, Holland G J, Bruyère C L, et al. 2015. Modeling high-impact weather and climate:lessons from a tropical cyclone perspective. Climatic Change, 129(3-4):381-395, doi: 10.1007/s10584-013-0954-6
    Dudhia J. 1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. Journal of the Atmospheric Sciences, 46(20):3077-3107, doi: 10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
    Fierro A O, Rogers R F, Marks F D, et al. 2009. The impact of horizontal grid spacing on the microphysical and kinematic structures of strong tropical cyclones simulated with the WRF-ARW model. Monthly Weather Review, 137(11):3717-3743, doi: 10.1175/2009MWR2946.1
    Gall J S, Ginis I, Lin S J, et al. 2011. Experimental tropical cyclone prediction using the GFDL 25-km-resolution global atmospheric model. Weather and Forecasting, 26(6):1008-1019, doi: 10.1175/WAF-D-10-05015.1
    Gentry M S, Lackmann G M. 2010. Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution. Monthly Weather Review, 138(3):688-704, doi: 10.1175/2009MWR2976.1
    Gettelman A, Bresch D N, Chen C C, et al. 2018. Projections of future tropical cyclone damage with a high-resolution global climate model. Climatic Change, 146(3-4):575-585, doi: 10.1007/s10584-017-1902-7
    Guo Xingliang, Zhong Wei. 2017. The use of a spectral nudging technique to determine the impact of environmental factors on the track of typhoon megi (2010). Atmosphere, 8(12):257, doi: 10.3390/atmos8120257
    Hendricks E A, Jin Yi, Moskaitis J R, et al. 2016. Numerical simulations of Typhoon Morakot (2009) using a multiply nested tropical cyclone prediction model. Weather and Forecasting, 31(2):627-645, doi: 10.1175/WAF-D-15-0016.1
    Hong S Y, Lim J O J. 2006. The WRF single-moment 6-class microphysics scheme (WSM6). Journal of the Korean Meteorological Societys, 42(2):129-151
    Hong S Y, Noh Y, Dudhia J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review, 134(9):2318-2341, doi: 10.1175/MWR3199.1
    Jun S, Kang N Y, Lee W, et al. 2017. An alternative multi-model ensemble forecast for tropical cyclone tracks in the western North Pacific. Atmosphere, 8(9):174, doi: 10.3390/atmos8090174
    Kain J S. 2004. The Kain-Fritsch convective parameterization:an update. Journal of Applied Meteorology, 43(1):170-181, doi: 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
    Knutson T R, McBride J L, Chan J, et al. 2010. Tropical cyclones and climate change. Nature Geoscience, 3(3):157-163, doi: 10.1038/ngeo779
    Laprise R. 1992. The euler equations of motion with hydrostatic pressure as an independent variable. Monthly Weather Review, 120(1):197-207, doi: 10.1175/1520-0493(1992)120<0197:TEEOMW>2.0.CO;2
    Li Funing, Song Jinbao, Li Xia. 2018. A preliminary evaluation of the necessity of using a cumulus parameterization scheme in high-resolution simulations of Typhoon Haiyan (2013). Natural Hazards, 92(2):647-671, doi: 10.1007/s11069-018-3218-y
    Manganello J V, Hodges K I, Kinter Ⅲ J L, et al. 2012. Tropical cyclone climatology in a 10-km global atmospheric GCM:toward weather-resolving climate modeling. Journal of Climate, 25(11):3867-3893, doi: 10.1175/JCLI-D-11-00346.1
    Mlawer E J, Taubman S J, Brown P D, et al. 1997. Radiative transfer for inhomogeneous atmospheres:RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research:Atmospheres, 102(D14):16663-16682, doi: 10.1029/97JD00237
    Rogers R, Aberson S, Black M, et al. 2006. The intensity forecasting experiment:a NOAA multiyear field program for improving tropical cyclone intensity forecasts. Bulletin of the American Meteorological Society, 87(11):1523-1537, doi: 10.1175/BAMS-87-11-1523
    Skamarock W C, Klemp J B. 2008. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. Journal of Computational Physics, 227(7):3465-3485, doi: 10.1016/j.jcp.2007.01.037
    Sun Yuan, Zhong Zhong, Li T, et al. 2017. Impact of ocean warming on tropical cyclone track over the western north pacific:a numerical investigation based on two case studies. Journal of Geophysical Research:Atmospheres, 122(16):8617-8630, doi: 10.1002/2017JD026959
    Walsh K, Lavender S, Scoccimarro E, et al. 2013. Resolution dependence of tropical cyclone formation in CMIP3 and finer resolution models. Climate Dynamics, 40(3-4):585-599, doi: 10.1007/s00382-012-1298-z
    Wang C C, Kuo H C, Chen Yuhan, et al. 2012. Effects of asymmetric latent heating on typhoon movement crossing Taiwan:the case of Morakot (2009) with extreme rainfall. Journal of the Atmospheric Sciences, 69(11):3172-3196, doi: 10.1175/JAS-D-11-0346.1
    Wang Hui, Wang Yuqing. 2014. A numerical study of Typhoon Megi (2010). Part I:rapid intensification. Monthly Weather Review, 142(1):29-48, doi: 10.1175/MWR-D-13-00070.1
    Wang Y, Wu C C. 2004. Current understanding of tropical cyclone structure and intensity changes-a review. Meteorology and Atmospheric Physics, 87(4):257-278, doi: 10.1007/s00703-003-0055-6
    Weisman M L, Skamarock W C, Klemp J B. 1997. The resolution dependence of explicitly modeled convective systems. Monthly Weather Review, 125(4):527-548, doi: 10.1175/1520-0493(1997)125<0527:TRDOEM>2.0.CO;2
    Weng C H, Hsu H H. 2017. Intraseasonal oscillation enhancing C5 typhoon occurrence over the tropical western North Pacific. Geophysical Research Letters, 44(7):3339-3345, doi: 10.1002/2017GL072743
    Wessel P, Smith W H F. 1996. A global, self-consistent, hierarchical, high-resolution shoreline database. Journal of Geophysical Research:Solid Earth, 101(B4):8741-8743, doi: 10.1029/96JB00104
    Wu Zhiyuan, Jiang Changbo, Chen Jie, et al. 2019a. Three-dimensional temperature field change in the south China Sea during typhoon Kai-tak (1213) based on a fully coupled atmosphere-wave-ocean model. Water, 11(1):140, doi: 10.3390/w11010140
    Wu Zhiyuan, Jiang Changbo, Deng Bin, et al. 2018. Evaluation of numerical wave model for typhoon wave simulation in South China Sea. Water Science and Engineering, 11(3):229-235, doi: 10.1016/j.wse.2018.09.001
    Wu Zhiyuan, Jiang Changbo, Deng Bin, et al. 2019b. Numerical investigation of Typhoon Kai-tak (1213) using a mesoscale coupled WRF-ROMS model. Ocean Engineering, 175:1-15, doi: 10.1016/j.oceaneng.2019.01.053
    Wu Zhiyuan, Jiang Changbo, Mack C, et al. 2019c. Hybrid improved empirical mode decomposition and BP neural network model for the prediction of sea surface temperature. Ocean Science, 15(2):349-360, doi: 10.5194/os-15-349-2019
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (771) PDF downloads(468) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return