Citation: | Wu Tuoyu, Tian Liyan, Gao Jinwei, Dong Yanhui. Petrology and geochemistry of serpentinized peridotites from Hahajima Seamount in Izu-Bonin forearc region[J]. Acta Oceanologica Sinica, 2019, 38(11): 99-110. doi: 10.1007/s13131-019-1469-x |
Alt J C, Shanks III W C. 2006. Stable isotope compositions of serpentinite seamounts in the Mariana forearc:serpentinization processes, fluid sources and sulfur metasomatism. Earth and Planetary Science Letters, 242(3-4):272-285
|
Barnes J D, Sharp Z D, Fischer T P. 2008. Chlorine isotope variations across the Izu-Bonin-Mariana arc. Geology, 36(11):883-886, doi: 10.1130/G25182A.1
|
Bebout G E, Barton M D. 2002. Tectonic and metasomatic mixing in a high-T, subduction-zone mélange-insights into the geochemical evolution of the slab-mantle interface. Chemical Geology, 187(1-2):79-106
|
Davies J H. 1999. The role of hydraulic fractures and intermediate-depth earthquakes in generating subduction-zone magmatism. Nature, 398(6723):142-145, doi: 10.1038/18202
|
Deschamps F, Godard M, Guillot S, et al. 2013. Geochemistry of subduction zone serpentinites:a review. Lithos, 178:96-127, doi: 10.1016/j.lithos.2013.05.019
|
Deschamps F, Guillot S, Godard M, et al. 2011. Serpentinites act as sponges for fluid-mobile elements in abyssal and subduction zone environments. Terra Nova, 23(3):171-178, doi: 10.1111/j.1365-3121.2011.00995.x
|
Fryer P B. 1992. A synthesis of Leg 125 drilling of serpentine seamounts on the Mariana and Izu-Bonin forearcs. In:Proceedings of the Ocean Drilling Program, Scientific Results. TX:Ocean Drilling Program, 593
|
Fryer P, Lockwood J P, Becker N, et al. 2000. Significance of serpentine mud volcanism in convergent margins. In:Dilek Y, Moores E M, Elthon D, et al., eds. Ophiolites and Oceanic Crust:New Insights from Field Studies and Ocean Drilling Program. Boulder, Colorado:Special Papers Geological Society of America, 35-51
|
Fryer P, Salisbury M H. 2006. Leg 195 synthesis:site 1200-serpentinite seamounts of the Izu-Bonin/Mariana convergent plate margin (ODP Leg 125 and 195 drilling results). In:Proceedings of the Ocean Drilling Program, Scientific Results. TX:Ocean Drilling Program, 1-30
|
Fryer P B, Wheat C G, Williams T, et al. 2018. Expedition 366 summary. In:Fryer, P, Wheat C G, Williams T, et al., eds. Proceedings of the International Ocean Discovery Program, 366. College Station, TX:International Ocean Discovery Program, 10.14379/iodp.proc.366.101.2018
|
Fujioka K, Tanaka T, Aoike K. 1995. Serpentine seamount in Izu-Bonin and Mariana forearcs-observation by a submersible and its relation to onland serpentinite belt. Journal of Geography, 104(3):473-494, doi: 10.5026/jgeography.104.3_473
|
Fujioka K, Tokunaga W, Yokose H, et al. 2005. Hahajima seamount:an enigmatic tectonic block at the junction between the Izu-Bonin and Mariana Trenches. Island Arc, 14(4):616-622, doi: 10.1111/j.1440-1738.2005.00488.x
|
Gao S, Luo T C, Zhang B R, et al. 1998. Chemical composition of the continental crust as revealed by studies in East China. Geochimica et Cosmochimica Acta, 62(11):1959-1975, doi: 10.1016/S0016-7037(98)00121-5
|
Govolov I N, Palandzhian S A, Tararin I A, et al. 1995. Ophiolites, boninites, and basalts of an inner slope of the Izu-Bonin Trench. In:Tokuyama H, Shcheka A, Isezaki N, et al., eds. Geology and Geophysics of the Philippine Sea. Tokyo:Terra Scientific Publishing Company, 279-309
|
Hart S R, Zindler A. 1986. In search of a bulk-earth composition. Chemical Geology, 57(3-4):247-267
|
Hattori K H, Guillot S. 2003. Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge. Geology, 31(6):525-528, doi: 10.1130/0091-7613(2003)031<0525:VFFAAC>2.0.CO;2
|
Hofmann A W. 1997. Mantle geochemistry:the message from oceanic volcanism. Nature, 385(6613):219-229, doi: 10.1038/385219a0
|
Hulme S M, Wheat C G, Fryer P, et al. 2010. Pore water chemistry of the Mariana serpentinite mud volcanoes:a window to the seismogenic zone. Geochemistry, Geophysics, Geosystems, 11(1):Q01X09
|
Ishii T. 1981. Pyroxene geothermometry of basalts and an andesite from the Palau-Kyushu and West Mariana ridges. Deep Sea Drilling Project Leg 59. In:Kroenke L, Scott R, eds. Initial Report of Deep Sea Drilling Project, 59. Washington DC:Initial Report DSDP, 693-718
|
Ishii T, Nasu N, Kobayashi K, et al. 1985. Dredged samples from the Ogasawara fore-arc seamount of 'Ogasawara Paleoland'-'Fore-arc Ophiolite'. In:Formation of Active Ocean Margins. Tokyo:Terra Scientific Publishing Company, 307-342
|
Ishii T, Robinson P T, Maekawa H, et al. 1992. Petrological studies of peridotites from diapiric serpentinites seamounts in the Izu-Ogasawara-Mariana forearc, Leg 125. In:Proceedings of the Ocean Drilling Program, Scientific Results. TX:Ocean Drilling Program, 445-485
|
Ishii T, Sato H, Haraguchi S, et al. 2000. Petrological characteristics of peridotites from serpentinite seamounts in the Izu-Ogasawara-Mariana Forearc. Journal of Geography, 109(4):517-530, doi: 10.5026/jgeography.109.4_517
|
Ishiwatari A, Ichiyama Y. 2004. Alaskan-type plutons and ultramafic lavas in Far East Russia, Northeast China, and Japan. International Geology Review, 46(4):316-331, doi: 10.2747/0020-6814.46.4.316
|
Ishiwatari A, Yanagida Y, Li Y B, et al. 2006. Dredge petrology of the boninite-and adakite-bearing Hahajima Seamount of the Ogasawara (Bonin) forearc:an ophiolite or a serpentinite seamount?. Island Arc, 15(1):102-118, doi: 10.1111/j.1440-1738.2006.00512.x
|
Kahl W A, Jöns N, Bach W, et al. 2015. Ultramafic clasts from the South Chamorro serpentine mud volcano reveal a polyphase serpentinization history of the Mariana forearc mantle. Lithos, 227:1-20, doi: 10.1016/j.lithos.2015.03.015
|
Kamimura A, Kasahara J, Shinohara M, et al. 2002. Crustal structure study at the Izu-Bonin subduction zone around 31°N:implications of serpentinized materials along the subduction plate boundary. Physics of the Earth and Planetary Interiors, 132(1-3):105-129
|
Kastner M, Solomon E A, Harris R N, et al. 2014. Fluid origins, thermal regimes, and fluid and solute fluxes in the forearc of subduction zones. Developments in Marine Geology, 7:671-733, doi: 10.1016/B978-0-444-62617-2.00022-0
|
Kelley K A, Plank T, Newman S, et al. 2010. Mantle melting as a function of water content beneath the Mariana Arc. Journal of Petrology, 51(8):1711-1738, doi: 10.1093/petrology/egq036
|
Keppler H. 1996. Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature, 380(6571):237-240, doi: 10.1038/380237a0
|
King R L, Bebout G E, Moriguti T, et al. 2006. Elemental mixing systematics and Sr-Nd isotope geochemistry of mélange formation:obstacles to identification of fluid sources to arc volcanics. Earth and Planetary Science Letters, 246(3-4):288-304
|
Kodolányi J, Pettke T, Spandler C, et al. 2012. Geochemistry of ocean floor and fore-arc serpentinites:constraints on the ultramafic input to subduction zones. Journal of Petrology, 53(2):235-270, doi: 10.1093/petrology/egr058
|
Kogiso T, Tatsumi Y, Nakano S. 1997. Trace element transport during dehydration processes in the subducted oceanic crust:1. Experiments and implications for the origin of ocean island basalts. Earth and Planetary Science Letters, 148(1-2):193-205
|
Korenaga J. 2017. On the extent of mantle hydration caused by plate bending. Earth and Planetary Science Letters, 457:1-9, doi: 10.1016/j.epsl.2016.10.011
|
Langmuir C H, Bézos A, Escrig S, et al. 2006. Chemical systematics and hydrous melting of the mantle in back-arc basins. In:Back-Arc Spreading Systems:Geological, Biological, Chemical, and Physical Interactions. Washington, DC:American Geophysical Union, 87-146
|
Leeman W P. 2013. Boron and other fluid-mobile elements in volcanic arc lavas:implications for subduction processes. In:Bebout G E, Scholl D W, Kirby S H, et al, eds. Subduction:Top to Bottom. Washington, DC:American Geophysical Union, 269-276
|
Li Y B, Kimura J I, Machida S, et al. 2013. High-Mg adakite and low-Ca boninite from a Bonin fore-arc seamount:implications for the reaction between slab melts and depleted mantle. Journal of Petrology, 54(6):1149-1175, doi: 10.1093/petrology/egt008
|
Liu Y S, Zong K Q, Kelemen P B, et al. 2008. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole:subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chemical Geology, 247(1-2):133-153
|
Marschall H R, Altherr R, Rüpke L. 2007. Squeezing out the slab-modelling the release of Li, Be and B during progressive high-pressure metamorphism. Chemical Geology, 239(3-4):323-335
|
Michael P J, Bonatti E. 1985. Peridotite composition from the North Atlantic:regional and tectonic variations and implications for partial melting. Earth and Planetary Science Letters, 73(1):91-104, doi: 10.1016/0012-821X(85)90037-8
|
Miura R, Nakamura Y, Koda K, et al. 2004. "Rootless" serpentinite seamount on the southern Izu-Bonin forearc:implications for basal erosion at convergent plate margins. Geology, 32(6):541-544, doi: 10.1130/G20319.1
|
Mottl M J. 1992. Pore waters from serpentine seamounts in the Mariana and Izu-Bonin Forearcs, Leg 125:evidence for volatiles from the subducting slab. In:Proceedings of the Ocean Drilling Program, Scientific Results. TX:Ocean Drilling Program, 373-387
|
Mottl M J, Komor S C, Fryer P, et al. 2003. Deep-slab fluids fuel extremophilic Archaea on a Mariana forearc serpentinite mud volcano:Ocean Drilling Program Leg 195. Geochemistry, Geophysics, Geosystems, 4(11):9009
|
Mottl M J, Wheat C G, Fryer P, et al. 2004. Chemistry of springs across the Mariana forearc shows progressive devolatilization of the subducting plate. Geochimica et Cosmochimica Acta, 68(23):4915-4933, doi: 10.1016/j.gca.2004.05.037
|
Niu Y L. 2004. Bulk-rock major and trace element compositions of abyssal peridotites:implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. Journal of Petrology, 45(12):2423-2458, doi: 10.1093/petrology/egh068
|
Noll P D Jr, Newsom H E, Leeman W P, et al. 1996. The role of hydrothermal fluids in the production of subduction zone magmas:evidence from siderophile and chalcophile trace elements and boron. Geochimica et Cosmochimica Acta, 60(4):587-611, doi: 10.1016/0016-7037(95)00405-X
|
Ohara Y. 2006. Mantle process beneath Philippine Sea back-arc spreading ridges:a synthesis of peridotite petrology and tectonics. Island Arc, 15(1):119-129, doi: 10.1111/j.1440-1738.2006.00515.x
|
Okamura H, Arai S, Kim Y U. 2006. Petrology of forearc peridotite from the Hahajima Seamount, the Izu-Bonin arc, with special reference to chemical characteristics of chromian spinel. Mineralogical Magazine, 70(1):15-26, doi: 10.1180/0026461067010310
|
Palme H, O'Neill H S C. 2014. Cosmochemical estimates of mantle composition. In:Holland H D, Turekian K K, eds. Treatise on Geochemistry. Oxford:Elsevier-Pergamon, 1-39
|
Parkinson I J, Pearce J A. 1998. Peridotites from the Izu-Bonin-Mariana forearc (ODP Leg 125):evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. Journal of Petrology, 39(9):1577-1618, doi: 10.1093/petroj/39.9.1577
|
Parkinson I J, Pearce J A, Thirlwall M F, et al. 1992. Trace element geochemistry of peridotites from the Izu-Bonin-Mariana forearc, Leg 125. In:Proceedings of the Ocean Drilling Program, Scientific Results. TX:Ocean Drilling Program, 487-506
|
Pearce J A, Parkinson I J. 1993. Trace element models for mantle melting:application to volcanic arc petrogenesis. In:Prichard H M, Alabaster T, Harris N B W, et al, eds. Magmatic Processes and Plate Tectonics. Geological Society, London, Special Publication, 76:373-403
|
Peters D, Bretscher A, John T, et al. 2017. Fluid-mobile elements in serpentinites:constraints on serpentinisation environments and element cycling in subduction zones. Chemical Geology, 466:654-666, doi: 10.1016/j.chemgeo.2017.07.017
|
Ryan J G, Morris J, Tera F, et al. 1995. Cross-arc geochemical variations in the Kurile arc as a function of slab depth. Science, 270(5236):625-627, doi: 10.1126/science.270.5236.625
|
Salters V J M, Stracke A. 2004. Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems, 5(5):Q05004
|
Savov I P, Guggino S, Ryan J G, et al. 2005a. Geochemistry of serpentinite muds and metamorphic rocks from the mariana forearc, ODP sites 1200 and 778-779, South Chamorro and conical seamounts. In:Proceedings of the Ocean Drilling Program, Scientific Results. TX:Ocean Drilling Program, 1-49
|
Savov I P, Ryan J G, Chan L H, et al. 2002. Geochemistry of serpentinites from the S. Chamorro Seamount, ODP Leg 195, Site 1200, Mariana forearc-implications for recycling at subduction zones. Geochimica et Cosmochimica Acta, 66:A670
|
Savov I P, Ryan J G, D'Antonio M, et al. 2005b. Geochemistry of serpentinized peridotites from the Mariana forearc conical seamount, ODP Leg 125:implications for the elemental recycling at subduction zones. Geochemistry, Geophysics, Geosystems, 6(4):Q04J15
|
Savov I P, Ryan J G, D'Antonio M, et al. 2007. Shallow slab fluid release across and along the Mariana arc-basin system:insights from geochemistry of serpentinized peridotites from the Mariana fore arc. Journal of Geophysical Research:Solid Earth, 112(B9):B09205
|
Shaw A M, Hauri E H, Fischer T P, et al. 2008. Hydrogen isotopes in Mariana arc melt inclusions:implications for subduction dehydration and the deep-Earth water cycle. Earth Planetary Science Letters, 275(1-2):138-145
|
Singer B S, Jicha B R, Leeman W P, et al. 2007. Along-strike trace element and isotopic variation in Aleutian Island arc basalt:subduction melts sediments and dehydrates serpentine. Journal of Geophysical Research:Solid Earth, 112(B6):B06206
|
Stalder R, Foley S F, Brey G P, et al. 1998. Mineral-aqueous fluid partitioning of trace elements at 900-1 200℃ and 3.0-5.7 GPa:new experimental data for garnet, clinopyroxene, and rutile, and implications for mantle metasomatism. Geochimica et Cosmochimica Acta, 62(10):1781-1801, doi: 10.1016/S0016-7037(98)00101-X
|
Stern R J. 2002. Subduction zones. Review of Geophysics, 40(4):1012, doi: 10.1029/2001RG000108
|
Stern R J, Kohut E, Bloomer S H, et al. 2006. Subduction factory processes beneath the Guguan cross-chain, Mariana Arc:no role for sediments, are serpentinites important?. Contributions to Mineralogy and Petrology, 151(2):202-221, doi: 10.1007/s00410-005-0055-2
|
Straub S M, Layne G D. 2002. The systematics of boron isotopes in Izu arc front volcanic rocks. Earth and Planetary Science Letters, 198(1-2):25-39
|
Straub S M, Layne G D. 2003. The systematics of chlorine, fluorine, and water in Izu arc front volcanic rocks:implications for volatile recycling in subduction zones. Geochimica et Cosmochimica Acta, 67(21):4179-4203, doi: 10.1016/S0016-7037(03)00307-7
|
Taylor R N, Nesbitt R W. 1998. Isotopic characteristics of subduction fluids in an intra-oceanic setting, Izu-Bonin Arc, Japan. Earth and Planetary Science Letters, 164(1-2):79-98
|
Tonarini S, Agostini S, Doglioni C, et al. 2007. Evidence for serpentinite fluid in convergent margin systems:the example of El Salvador (Central America) arc lavas. Geochemistry, Geophysics, Geosystems, 8(9):Q09014
|
Ulmer P, Trommsdorff V. 1995. Serpentine stability to mantle depths and subduction-related magmatism. Science, 268(5212):858-861, doi: 10.1126/science.268.5212.858
|
Woodhead J, Eggins S, Gamble J. 1993. High field strength and transition element systematics in island arc and back-arc basin basalts:evidence for multi-phase melt extraction and a depleted mantle wedge. Earth and Planetary Science Letters, 114(4):491-504, doi: 10.1016/0012-821X(93)90078-N
|
Wunder B, Schreyer W. 1997. Antigorite:high-pressure stability in the system MgO-SiO2-H2O (MSH). Lithos, 41(1-3):213-227
|