Citation: | LIU Qian, XIE Xiaohui, SHANG Xiaodong, CHEN Guiying, WANG Hong. Modal structure and propagation of internal tides in the northeastern South China Sea[J]. Acta Oceanologica Sinica, 2019, 38(9): 12-23. doi: 10.1007/s13131-019-1473-1 |
Alford M H. 2003. Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature, 423(6936):159-162, doi: 10.1038/nature01628
|
Duda T F, Lynch J F, Irish J D, et al. 2004. Internal tide and nonlinear internal wave behavior at the continental slope in the northern South China Sea. IEEE Journal of Oceanic Engineering, 29(4):1105-1130, doi: 10.1109/JOE.2004.836998
|
Duda T F, Rainville L. 2008. Diurnal and semidiurnal internal tide energy flux at a continental slope in the South China Sea. Journal of Geophysical Research:Oceans, 113(C3):C03025
|
Egbert G D, Erofeeva S Y. 2002. Efficient inverse modeling of Barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19(2):183-204, doi: 10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
|
Farmer D, Li Q, Park J H. 2009. Internal wave observations in the South China Sea:The role of rotation and non-linearity. Atmosphere-Ocean, 47(4):267-280, doi: 10.3137/OC313.2009
|
Garrett C, Kunze E. 2007. Internal tide generation in the deep ocean. Annual Review of Fluid Mechanics, 39:57-87, doi: 10.1146/annurev.fluid.39.050905.110227
|
Gill A E. 1982. Atmosphere-Ocean Dynamics. New York:Academic Press
|
Huang X D, Wang Z Y, Zhang Z W, et al. 2018. Role of mesoscale eddies in modulating the semidiurnal internal tide:observation results in the northern South China Sea. Journal of Physical Oceanography, 48(8):1749-1770, doi: 10.1175/JPO-D-17-0209.1
|
Jan S, Chen C T A. 2009. Potential biogeochemical effects from vigorous internal tides generated in Luzon Strait:A case study at the southernmost coast of Taiwan. Journal of Geophysical Research:Oceans, 114(C4):C04021
|
Klymak J M, Alford M H, Pinkel R, et al. 2011. The breaking and scattering of the internal tide on a continental slope. Journal of Physical Oceanography, 41(5):926-945, doi: 10.1175/2010JPO4500.1
|
Lien R C, Tang T Y, Chang M H, et al. 2005. Energy of nonlinear internal waves in the South China Sea. Geophysical Research Letters, 32(5):L05615
|
Liu Qian, Xie Xiaohui, Shang Xiaodong, et al. 2016. Coherent and incoherent internal tides in the southern South China Sea. Chinese Journal of Oceanology and Limnology, 34(6):1374-1382, doi: 10.1007/s00343-016-5171-5
|
Munk W, Wunsch C. 1998. Abyssal recipes II:Energetics of tidal and wind mixing. Deep Sea Research Part I:Oceanographic Research Papers, 45(12):1977-2010, doi: 10.1016/S0967-0637(98)00070-3
|
Nash J D, Alford M H, Kunze E. 2005. Estimating internal wave energy fluxes in the ocean. Journal of Atmospheric and Oceanic Technology, 22(10):1551-1570, doi: 10.1175/JTECH1784.1
|
Niwa Y, Hibiya T. 2004. Three-dimensional numerical simulation of M2 internal tides in the East China Sea. Journal of Geophysical Research:Oceans, 109(C4):C04027
|
Pingree R D, New A L. 1991. Abyssal penetration and bottom reflection of internal tidal energy in the Bay of Biscay. Journal of Physical Oceanography, 21(1):28-39, doi: 10.1175/1520-0485(1991)021<0028:APABRO>2.0.CO;2
|
Powell B S, Kerry C G, Cornuelle B D. 2013. Using a numerical model to understand the connection between the ocean and acoustic travel-time measurements. The Journal of the Acoustical Society of America, 134(4):3211-3222, doi: 10.1121/1.4818786
|
Rainville L, Johnston T M S, Carter G S, et al. 2010. Interference pattern and propagation of the M2 internal tide south of the Hawaiian Ridge. Journal of Physical Oceanography, 40(2):311-325, doi: 10.1175/2009JPO4256.1
|
Shang Xiaodong, Liu Qian, Xie Xiaohui, et al. 2015. Characteristics and seasonal variability of internal tides in the southern South China Sea. Deep Sea Research Part I:Oceanographic Research Papers, 98:43-52, doi: 10.1016/j.dsr.2014.12.005
|
Tian Jiwei, Yang Qingxuan, Zhao Wei. 2009. Enhanced diapycnal mixing in the South China Sea. Journal of Physical Oceanography, 39(12):3191-3203, doi: 10.1175/2009JPO3899.1
|
van Haren H. 2005. Tidal and near-inertial peak variations around the diurnal critical latitude. Geophysical Research Letters, 32(23):L23611, doi: 10.1029/2005GL024160
|
Xie Xiaohui, Liu Qian, Zhao Zhongxiang, et al. 2018. Deep sea currents driven by breaking internal tides on the continental slope. Geophysical Research Letters, 45(12):6160-6166
|
Xie Xiaohui, Shang Xiaodong, Chen Guiying. 2010. Nonlinear interactions among internal tidal waves in the northeastern South China Sea. Chinese Journal of Oceanology and Limnology, 28(5):996-1001, doi: 10.1007/s00343-010-9064-8
|
Xie Xiaohui, Shang Xiaodong, Van Haren H, et al. 2013. Observations of enhanced nonlinear instability in the surface reflection of internal tides. Geophysical Research Letters, 40(8):1580-1586, doi: 10.1002/grl.50322
|
Xu Zhenhua, Liu Kun, Yin Baoshu, et al. 2016. Long-range propagation and associated variability of internal tides in the South China Sea. Journal of Geophysical Research:Oceans, 121(11):8268-8286, doi: 10.1002/jgrc.v121.11
|
Xu Zhenhua, Yin Baoshu, Hou Yijun, et al. 2014. Seasonal variability and north-south asymmetry of internal tides in the deep basin west of the Luzon Strait. Journal of Marine Systems, 134:101-112, doi: 10.1016/j.jmarsys.2014.03.002
|
Zhao Zhongxiang. 2014. Internal tide radiation from the Luzon Strait. Journal of Geophysical Research:Oceans, 119(8):5434-5448, doi: 10.1002/2014JC010014
|
Zhao Zhongxiang, Alford M H, MacKinnon J A, et al. 2010. Long-range propagation of the semidiurnal internal tide from the Hawaiian Ridge. Journal of Physical Oceanography, 40(4):713-736, doi: 10.1175/2009JPO4207.1
|
1. | Qian Liu, Zhao Song, Huan Mei, et al. Nonlinear interactions of internal waves and the force of internal solitary waves on small - Diameter cylinders. Ocean Engineering, 2025, 326: 120840. doi:10.1016/j.oceaneng.2025.120840 | |
2. | Liming Fan, Hui Sun, Qingxuan Yang, et al. Numerical investigation of interaction between anticyclonic eddy and semidiurnal internal tide in the northeastern South China Sea. Ocean Science, 2024, 20(1): 241. doi:10.5194/os-20-241-2024 | |
3. | Zhaoyang Tian, Yonggang Jia, Junjiang Zhu, et al. Microseismic observations reveal that internal waves intensify seabed methane release. Science China Earth Sciences, 2024, 67(10): 3186. doi:10.1007/s11430-023-1351-2 | |
4. | 兆阳 田, 永刚 贾, 俊江 朱, et al. 微震观测揭示内波加剧海底甲烷释放. SCIENTIA SINICA Terrae, 2024, 54(10): 3237. doi:10.1360/SSTe-2023-0304 | |
5. | Qian Liu, Jian Cui, Huan Mei, et al. Study on the Load Characteristics of Submerged Body Under Internal Solitary Waves on the Continental Shelf and Slope. China Ocean Engineering, 2024, 38(5): 809. doi:10.1007/s13344-024-0063-5 | |
6. | Rongwei Zhai, Guiying Chen, Chenjing Shang, et al. The effect of Typhoon Kalmaegi on the modal energy and period of internal waves near the Dongsha Islands (South China Sea). Acta Oceanologica Sinica, 2023, 42(12): 22. doi:10.1007/s13131-023-2205-7 | |
7. | Wei Yang, Ruixiang Li, Yanqing Feng, et al. Cross-shelf variation of internal tides west of the Dongsha Plateau in the northern South China Sea. Acta Oceanologica Sinica, 2023, 42(10): 23. doi:10.1007/s13131-023-2251-1 | |
8. | Haonan Wang, Yonggang Jia, Chunsheng Ji, et al. Internal tide-induced turbulent mixing and suspended sediment transport at the bottom boundary layer of the South China Sea slope. Journal of Marine Systems, 2022, 230: 103723. doi:10.1016/j.jmarsys.2022.103723 | |
9. | Hui Wang, Cong Hu, Xuezhi Feng, et al. In-situ long-period monitoring of suspended particulate matter dynamics in deep sea with digital video images. Frontiers in Marine Science, 2022, 9 doi:10.3389/fmars.2022.1011029 | |
10. | Zhipeng Zhang, Hongzhou Xu, Philip A. Vetter, et al. High-Frequency Motions in the Southeastern South China Sea During Winter–Spring 2018/2019. Frontiers in Marine Science, 2021, 8 doi:10.3389/fmars.2021.681993 |