Citation: | Ma Yao, Wang Xiaoyuan, Chen Shuai, Yin Xuebo, Zhu Bowen, Guo Kun, Zeng Zhigang. Origin of Cu in the PACMANUS hydrothermal field from the eastern Manus back-arc basin: evidence from mass balance modeling[J]. Acta Oceanologica Sinica, 2019, 38(9): 59-70. doi: 10.1007/s13131-019-1475-z |
Ammonn M, Hauert R, Burtscher H, et al. 1993. Photoelectric charging of ultrafine volcanic aerosols:detection of Cu(I) as a tracer of chlorides in magmatic gases. Journal of Geophysical Research, 98(B1):551-556, doi: 10.1029/92JB01870
|
Auzende J M, Urabe T. 1996a. Cruise explores hydrothermal vents of the Manus Basin. Eos, Transactions American Geophysical Union, 77:244, doi: 10.1029/96EO00174
|
Auzende J M, Urabe T. 1996b. Submersible observation of tectonic, magmatic and hydrothermal activity in the Manus Basin (Papua New Guinea). Eos, Transactions American Geophysical Union, 77:115
|
Ballhaus C, Ryan C G, Mernagh T P, et al. 1994. The partitioning of Fe, Ni, Cu, Pt, and Au between sulfide, metal, and fluid phases:a pilot study. Geochimica et Cosmochimica Acta, 58(2):811-826, doi: 10.1016/0016-7037(94)90507-X
|
Bartetzko A, Paulick H, Iturrino G, et al. 2003. Facies reconstruction of a hydrothermally altered dacite extrusive sequence:evidence from geophysical downhole logging data (ODP Leg 193). Geochemistry, Geophysics, Geosystems, 4(10):1087
|
Beaudoin Y, Scott S D. 2009. Pb in the PACMANUS sea-floor hydrothermal system, eastern Manus Basin:numerical modeling of a magmatic versus leached origin. Economic Geology, 104(5):749-758, doi: 10.2113/gsecongeo.104.5.749
|
Beaudoin Y, Scott S D, Gorton M P, et al. 2007. Effects of hydrothermal alteration on Pb in the active PACMANUS hydrothermal field, ODP Leg 193, Manus Basin, Papua New Guinea:a LA-ICP-MS study. Geochimica et Cosmochimica Acta, 71(17):4256-4278, doi: 10.1016/j.gca.2007.06.034
|
Becker K, Morin R H, Davis E E. 1994. Permeabilities in the Middle Valley hydrothermal system measured with packer and flowmeter experiments. In:Davis E E, Mottl M J, Fisher A T, et al., eds. Proceedings of the Ocean Drilling Program, Scientific Results, 139:613–625
|
Beier C, Bach W, Turner S, et al. 2015. Origin of silicic magmas at spreading centres:an example from the South East Rift, Manus Basin. Journal of Petrology, 56(2):255-272, doi: 10.1093/petrology/egu077
|
Binns R A. 2004. Eastern Manus basin, Papua New Guinea:guides for volcanogenic massive sulphide exploration from a modern seafloor analogue. CSIRO Explores, 2:59-80
|
Binns R A, Barriga F J A S, Miller D J. 2007. Leg 193 synthesis:Anatomy of an active felsic-hosted hydrothermal system, eastern Manus Basin, Papua New Guinea. In:Barriga F J A S, Binns R A, Miller D J, et al., eds. Proceedings of the Ocean Drilling Program, Scientific Results. College Station:TX (Ocean Drilling Program), 193:1–71
|
Binns R A, Scott S D. 1993. Actively forming polymetallic sulfide deposits associated with felsic volcanic rocks in the eastern Manus back-arc basin, Papua New Guinea. Economic Geology, 88(8):2226-2236, doi: 10.2113/gsecongeo.88.8.2226
|
Binns R A, Scott S D, Gemmell J B, et al. 1997. The Susu Knolls hydrothermal field, eastern Manus Basin, Papua New Guinea. Eos, Transactions American Geophysical Union, 78:772
|
Cathles L M. 1993. A capless 350℃ flow zone model to explain megaplumes, salinity variations, and high-temperature veins in ridge axis hydrothermal systems. Economic Geology, 88(8):1977-1988, doi: 10.2113/gsecongeo.88.8.1977
|
Chen Zuxing, Zeng Zhigang, Wang Xiaoyuan, et al. 2018. U-Th/He dating and chemical compositions of apatite in the dacite from the southwestern Okinawa Trough:Implications for petrogenesis. Journal of Asian Earth Sciences, 161:1-13, doi: 10.1016/j.jseaes.2018.04.032
|
Deloule é, Paillat O, Pichavant M, et al. 1995. Ion microprobe determination of water in silicate glasses:methods and applications. Chemical Geology, 125(1-2):19-28, doi: 10.1016/0009-2541(95)00070-3
|
de Ronde C E J, Massoth G J, Butterfield D A, et al. 2011. Submarine hydrothermal activity and gold-rich mineralization at Brothers Volcano, Kermadec Arc, New Zealand. Mineralium Deposita, 46(5-6):541-584, doi: 10.1007/s00126-011-0345-8
|
de Ronde C E J, Walker S L, Ditchburn R G, et al. 2014. The anatomy of a buried submarine hydrothermal system, Clark volcano, Kermadec arc, New Zealand. Economic Geology, 109(8):2261-2292, doi: 10.2113/econgeo.109.8.2261
|
Douville E, Bienvenu P, Charlou J L, et al. 1999. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochimica et Cosmochimica Acta, 63(5):627-643, doi: 10.1016/S0016-7037(99)00024-1
|
Evans K A, Elburg M A, Kamenetsky V S. 2012. Oxidation state of subarc mantle. Geology, 40(9):783-786, doi: 10.1130/G33037.1
|
Fleet M E, Wu T W. 1993. Volatile transport of platinum-group elements in sulfide-chloride assemblages at 1000℃. Geochimica et Cosmochimica Acta, 57(15):3519-3531, doi: 10.1016/0016-7037(93)90136-K
|
Fouquet Y, Eissen JP, Ondréas H, et al. 1998. Extensive volcaniclastic deposits at the Mid-Atlantic Ridge axis:results of deep-water basaltic explosive volcanic activity?. Terra Nova, 10(5):280-286, doi: 10.1046/j.1365-3121.1998.00204.x
|
Gale A, Dalton C A, Langmuir C H, et al. 2013. The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems, 14(3):489-518, doi: 10.1029/2012GC004334
|
Gemmell J B, Binns R A, Parr J M. 1996. Comparison of sulfur isotope values between modern back-arc and mid-ocean ridge seafloor hydrothermal systems. Eos, Transactions American Geophysical Union, 77:117
|
Gruen G, Weis P, Driesner T, et al. 2014. Hydrodynamic modeling of magmatic-hydrothermal activity at submarine arc volcanoes, with implications for ore formation. Earth and Planetary Science Letters, 404:307-318, doi: 10.1016/j.epsl.2014.07.041
|
Guo Kun, Zhai Shikui, Wang Xiaoyuan, et al. 2018. The dynamics of the southern Okinawa Trough magmatic system:New insights from the microanalysis of the An contents, trace element concentrations and Sr isotopic compositions of plagioclase hosted in basalts and silicic rocks. Chemical Geology, 497:146-161, doi: 10.1016/j.chemgeo.2018.09.002
|
Hannington M D, Jonasson I R, Herzig P M, et al. 1995. Physical and chemical processes of seafloor mineralization at mid-ocean ridges. In:Humphris S, Zierenberg R, Mullineaux L, et al., eds. Seafloor Hydrothermal Systems:Physical, Chemical, Biological, and Geological Interactions. Washington DC:AGU, 115–157
|
Hannington M, Jamieson J, Monecke T, et al. 2010. Modern sea-floor massive sulfides and base metal resources:toward an estimate of global sea-floor massive sulfide potential. Society of Economic Geologists Special Publication, 15:317-338
|
Heinrich C A, Ryan C G, Mernagh T P, et al. 1992. Segregation of ore metals between magmatic brine and vapor:a fluid inclusion study using PIXE microanalysis. Economic Geology, 87(6):1566-1583, doi: 10.2113/gsecongeo.87.6.1566
|
Hekinian R, Pineau F, Shilobreeva S, et al. 2000. Deep sea explosive activity on the Mid-Altantic Ridge near 34°15' N:Magma composition, vesicularity and volatile content. Journal of Volcanology and Geothermal Research, 98(1-4):49-77, doi: 10.1016/S0377-0273(99)00190-0
|
Herzig P M, Petersen S, Kuhn T, et al. 2003. Shallow drilling of seafloor hydrothermal systems using R/V Sonne and the BGS rockdrill, Conical Seamount (New Ireland fore-arc) and Pacmanus (eastern Manus Basin), Papua New Guinea. InterRidge News, 12:22-26
|
Hurwitz S, Navon O. 1994. Bubble nucleation in rhyolitic melts:Experiments at high pressure, temperature, and water content. Earth and Planetary Science Letters, 122(3-4):267-285, doi: 10.1016/0012-821X(94)90001-9
|
Ishibashi J, Wakita H, Okamura K, et al. 1996. Chemical characteristics of hydrothermal fluids from the Manus back-arc basin, Papua New Guinea. Eos, Transactions American Geophysical Union, 77:116
|
Jankowski P, Lipton I, Blackburn J. 2011. Nautilus Minerals Incorporated NI43-101 Technical Report 2010 PNG, Tonga, Fiji, Solomon Islands, New Zealand, Vanuatu and the ISA. Australia:SRK Consulting Pty Ltd., 1–201
|
Jenner F E, O'Neill H S C, Arculus R J, et al. 2010. The magnetite crisis in the evolution of arc-related magmas and the initial concentration of Au, Ag and Cu. Journal of Petrology, 51(12):2445-2464, doi: 10.1093/petrology/egq063
|
Jugo P J, Wilke M, Botcharnikov R E. 2010. Sulfur K-edge XANES analysis of natural and synthetic basaltic glasses:implications for S speciation and S content as function of oxygen fugacity. Geochimica et Cosmochimica Acta, 74(20):5926-5938, doi: 10.1016/j.gca.2010.07.022
|
Kamenetsky V S, Binns R A, Gemmell J B, et al. 2001. Parental basaltic melts and fluids in eastern Manus backarc basin:Implications for hydrothermal mineralisation. Earth and Planetary Science Letters, 184(3-4):685-702, doi: 10.1016/S0012-821X(00)00352-6
|
Kelley K A, Cottrell E. 2012. The influence of magmatic differentiation on the oxidation state of Fe in a basaltic arc magma. Earth and Planetary Science Letters, 329-330:109-121, doi: 10.1016/j.epsl.2012.02.010
|
Lalou C, Brichet E, Hekinian R. 1985. Age dating of sulfide deposits from axial and off axial structures on the East Pacific Rise near 12°50' N. Earth and Planetary Science Letters, 75(1):59-71, doi: 10.1016/0012-821X(85)90050-0
|
Lalou C, Reyss J L, Brichet E, et al. 1993. New age data for Mid-Atlantic ridge hydrothermal sites:TAG and Snakepit chronology revisited. Journal of Geophysical Research, 98(B6):9705-9713, doi: 10.1029/92JB01898
|
Landtwing M R, Furrer C, Redmond P B, et al. 2010. The Bingham canyon porphyry Cu-Mo-Au deposit. III. Zoned copper-gold ore deposition by magmatic vapor expansion. Economic Geology, 105(1):91-118, doi: 10.2113/gsecongeo.105.1.91
|
Lee S M, Ruellan E. 2006. Tectonic and magmatic evolution of the Bismarck Sea, Papua New Guinea:review and new synthesis. In:Christie D M, Fisher C R, Lee S M, et al., eds. Back-Arc Spreading Systems:Geological, Biological, Chemical, and Physical Interactions. Washington DC:American Geophysical Union, 166:263-286
|
Li Zhenggang, Chu Fengyou, Dong Yanhui, et al. 2016. Origin of selective enrichment of Cu and Au in sulfide deposits formed at immature back-arc ridges:Examples from the Lau and Manus basins. Ore Geology Reviews, 74:52-62, doi: 10.1016/j.oregeorev.2015.11.010
|
Li Xiaohui, Zeng Zhigang, Yang Huixin, et al. 2019. Geochemistry of silicate melt inclusions in middle and southern Okinawa Trough rocks:Implications for petrogenesis and variable subducted sediment component injection. Geological Journal, 54(3):1160-1189, doi: 10.1002/gj.v54.3
|
Lipton I. 2008. Mineral resource estimate, Solwara 1 project, Bismarck Sea, Papua New Guinea. Technical Report NI43–101. Toronto:Nautilus Minerals Inc.
|
Lowell R R, Rona P A, von Herzen R P. 1995. Seafloor hydrothermal systems. Journal of Geophysical Research, 100(B1):327-352, doi: 10.1029/94JB02222
|
Lowenstern J B. 1993. Evidence for a copper-bearing fluid in magma erupted at the Valley of ten thousand smokes, Alaska. Contributions to Mineralogy and Petrology, 114(3):409-421, doi: 10.1007/BF01046542
|
Lowenstern J B. 1995. Application of silicate-melt inclusions to the study of magmatic volatiles. In:Thompson J F H, ed. Magmas, Fluids, and Ore Deposits. Canada:Mineralogical Society of Canada, 71–99
|
Lowenstern J B, Mahood G A, Rivers M L, et al. 1991. Evidence for extreme partitioning of copper into a magmatic vapor phase. Science, 252(5011):1405-1409, doi: 10.1126/science.252.5011.1405
|
Martinez F, Taylor B. 1996. Backarc spreading, rifting, and microplate rotation, between transform faults in the Manus Basin. Marine Geophysical Researches, 18(2-4):203-224, doi: 10.1007/BF00286078
|
Martinez F, Taylor B. 2003. Controls on back-arc crustal accretion:insights from the Lau, Manus and Mariana basins. In:Larter R D, Leat P T, eds. Intra-Oceanic Subduction Systems:Tectonic and Magmatic Processes. Geological Society, London, Special Publications, 219:19-54
|
Moss R, Scott S D, Binns R A. 1997. Concentrations of gold and other ore metals in volcanics hosting the Pacmanus seafloor sulfide deposit. JAMSTEC Journal of Deep Sea Research, 13:257-267
|
Moss R, Scott S D, Binns R A. 2001. Gold content of eastern Manus Basin volcanic rocks:implications for enrichment in associated hydrothermal precipitates. Economic Geology, 96(1):91-107
|
Mühe R, Peücker-Ehrenbrink B, Devey C W, et al. 1997. On the redistribution of Pb in the oceanic crust during hydrothermal alteration. Chemical Geology, 137(1-2):67-77, doi: 10.1016/S0009-2541(96)00151-9
|
Park S H, Lee S M, Kamenov G D, et al. 2010. Tracing the origin of subduction components beneath the South East Rift in the Manus Basin, Papua New Guinea. Chemical Geology, 269(3-4):339-349, doi: 10.1016/j.chemgeo.2009.10.008
|
Parr J, Yeats C, Binns R. 2003. Petrology, trace element geochemistry and isotope geochemistry of sulfides and oxides from the PACMANUS hydrothermal field, eastern Manus Basin, Papua New Guinea. In:Yeats C, ed. Seabed Hydrothermal Systems of the Western Pacific:Current Research and New Directions. CSIRO Exploration and Mining Report 1112, 58–64
|
Patten C, Barnes S J, Mathez E A, et al. 2013. Partition coefficients of chalcophile elements between sulfide and silicate melts and the early crystallization history of sulfide liquid:LA-ICP-MS analysis of MORB sulfide droplets. Chemical Geology, 358:170-188, doi: 10.1016/j.chemgeo.2013.08.040
|
Paulick H, Vanko D A, Yeats C J. 2004. Drill core-based facies reconstruction of a deep-marine felsic volcano hosting an active hydrothermal system (Pual Ridge, Papau New Guinea, ODP Leg 193). Journal of Volcanology and Geothermal Research, 130(1-2):31-50, doi: 10.1016/S0377-0273(03)00275-0
|
Petersen S, Herzig P M, Hannington M D, et al. 2003. Gold-rich massive sulfides from the interior of the felsic-hosted PACMANUS massive sulfide deposit, eastern Manus Basin (PNG). In:Eliopoulos D G, et al., eds. Mineral Exploration and Sustainable Development. Rotterdam:Millpress, 171–174
|
Resmini R G, Marsh B D. 1995. Steady-state volcanism, paleoeffusion rates, and magma system volume inferred from plagioclase crystal size distributions in mafic lavas:Dome Mountain, Nevada. Journal of Volcanology and Geothermal Research, 68(4):273-296, doi: 10.1016/0377-0273(95)00003-5
|
Richards J P. 2011. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geology Reviews, 40(1):1-26, doi: 10.1016/j.oregeorev.2011.05.006
|
Rubin K. 1997. Degassing of metals and metalloids from erupting seamount and mid-ocean ridge volcanoes:observations and predictions. Geochimica et Cosmochimica Acta, 61(17):3525-3542, doi: 10.1016/S0016-7037(97)00179-8
|
Scott S D. 1997. Submarine hydrothermal systems and deposits. In:Barnes H L, ed. Geochemistry of Hydrothermal Ore Deposits. New York:Wiley
|
Scott S D, Binns R A. 1992. The PACMANUS deposit; actively forming submarine polymetallic sulfides in felsic volcanic rocks of Manus Basin, Papua New Guinea. International Geological Congress, 29:754
|
Scott S D, Binns R A. 1995. Hydrothermal processes and contrasting styles of mineralization in the western Woodlark and eastern Manus Basins of the western Pacific. Geological Society, London, Special Publication, 87(1):191-205, doi: 10.1144/GSL.SP.1995.087.01.16
|
Seewald J S, Seyfried W E Jr. 1990. The effect of temperature on metal mobility in subseafloor hydrothermal systems:constraints from basalt alteration experiments. Earth and Planetary Science Letters, 101(2-4):388-403, doi: 10.1016/0012-821X(90)90168-W
|
Sinton J M, Ford L L, Chappell B, et al. 2003. Magma genesis and mantle heterogeneity in the Manus back-arc basin, Papua New Guinea. Journal of Petrology, 44(1):159-195, doi: 10.1093/petrology/44.1.159
|
Stanton R L. 1991. Understanding volcanic massive sulfides:past, present, and future. In:Hutchinson R W, Grauch R I, eds. Historical Perspectives of Genetic Concepts and Case Histories of Famous Discoveries. Society of Economic Geologists, 8:82–95
|
Stanton R L. 1994. Ore Elements in Arc Lavas. Oxford:Clarendon Press
|
Sun Weidong, Huang Ruifang, Li He, et al. 2015. Porphyry deposits and oxidized magmas. Ore Geology Reviews, 65:97-131, doi: 10.1016/j.oregeorev.2014.09.004
|
Symonds R B, Reed M H, Rose W I. 1992. Origin, speciation, and fluxes of trace-element gases at Augustine volcano, Alaska:Insights into magma degassing and fumarolic processes. Geochimica et Cosmochimica Acta, 56(2):633-657, doi: 10.1016/0016-7037(92)90087-Y
|
Symonds R B, Rose W I, Reed M H, et al. 1987. Volatilization, transport and sublimation of metallic and non-metallic elements in high temperature gases at Merapi Volcano, Indonesia. Geochimica et Cosmochimica Acta, 51(8):2083-2101, doi: 10.1016/0016-7037(87)90258-4
|
Taylor B. 1979. Bismarck Sea:Evolution of a back-arc basin. Geology, 7(4):171-174, doi: 10.1130/0091-7613(1979)7<171:BSEOAB>2.0.CO;2
|
Taylor H P Jr. 1997. Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. In:Barnes H L, ed. Geochemistry of Hydrothermal Ore Deposits. 3rd ed. New York:John Wiley & Sons, 229–302
|
Thal J, Tivey M, Yoerger D, et al. 2014. Geologic setting of PACMANUS hydrothermal area-high resolution mapping and in situ observations. Marine Geology, 355:98-114, doi: 10.1016/j.margeo.2014.05.011
|
Yang Kaihui, Scott S D. 1996. Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system. Nature, 383(6599):420-423, doi: 10.1038/383420a0
|
Yang Kaihui, Scott S D. 2002. Magmatic degassing of volatiles and ore metals into a hydrothermal system on the modern sea floor of the eastern Manus back-arc basin, western Pacific. Economic Geology, 97(5):1079-1100, doi: 10.2113/gsecongeo.97.5.1079
|
Yang Kaihui, Scott S D. 2005. Vigorous exsolution of volatiles in the magma chamber beneath a hydrothermal system on the modern sea floor of the eastern Manus back-arc basin, western Pacific:evidence from melt inclusions. Economic Geology, 100(6):1085-1096, doi: 10.2113/gsecongeo.100.6.1085
|
Yang Kaihui, Scott S D. 2006. Magmatic fluids as a source of metals in seafloor hydrothermal systems. In:Christie D M, Fischer C R, Lee S M, et al., eds. Back-Arc Spreading Systems:Geological, Biological, Chemical, and Physical Interactions. New York:American Geophysical Union, 166:163–184
|
Yeats C J, Parr J M, Binns R A, et al. 2014. The SuSu Knolls hydrothermal field, eastern Manus Basin, Papua New Guinea:an Active submarine high-sulfidation copper-gold system. Economic Geology, 109(8):2207-2226, doi: 10.2113/econgeo.109.8.2207
|
Zajacz Z, Halter W. 2009. Copper transport by high temperature, sulfur-rich magmatic vapor:evidence from silicate melt and vapor inclusions in a basaltic andesite from the Villarrica volcano (Chile). Earth and Planetary Science Letters, 282(1-4):115-121, doi: 10.1016/j.epsl.2009.03.006
|