Citation: | Wu Zhankai, Wang Xingdong, Wang Xuemei. An improved ARTSIST sea ice algorithm based on 19 GHz modified 91 GHz[J]. Acta Oceanologica Sinica, 2019, 38(10): 93-99. doi: 10.1007/s13131-019-1482-7 |
Andersen S, Tonboe R, Kaleschke L, et al. 2007. Intercomparison of passive microwave sea ice concentration retrievals over the high-concentration Arctic sea ice. Journal of Geophysical Research: Oceans, 112(C8): 207–220
|
Budikova D. 2009. Role of arctic sea ice in global atmospheric circulation: a review. Global and Planetary Change, 68(3): 149–163, doi: 10.1016/j.gloplacha.2009.04.001
|
Comiso J C. 1986. Characteristics of arctic winter sea ice from satellite multispectral microwave observations. Journal of Geophysical Research: Oceans, 91(C1): 975–994, doi: 10.1029/JC091iC01p00975
|
Comiso J C. 1995. SSM/I sea ice concentrations using the bootstrap algorithm. NASA Goddard Space Flight Center Ref. Publication, No. 1380. Washington: National Aeronautics and Space Administration
|
Gabarro C, Turiel A, Elosegui P, et al. 2017. New methodology to estimate Arctic sea ice concentration from SMOS combining brightness temperature differences in a maximum-likelihood estimator. The Cryosphere, 11(4): 1987–2002, doi: 10.5194/tc-11-1987-2017
|
Hollinger J P. 1989. DMSP Special Sensor Microwave/Imager Calibration/Validation. Final Report, Vol. I. Washington DC: Space Sensing Branch, Naval Research Laboratory
|
IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press
|
Kaleschke L, Lüpkes C, Vihma T, et al. 2001. SSM/I sea ice remote sensing for mesoscale ocean-atmosphere interaction analysis. Canadian Journal of Remote Sensing, 27(5): 526–537, doi: 10.1080/07038992.2001.10854892
|
Kern S. 2004. A new method for medium-resolution sea ice analysis using weather-influence corrected Special Sensor Microwave/Imager 85 GHz data. International Journal of Remote Sensing, 25(21): 4555–4582, doi: 10.1080/01431160410001698898
|
Kern S, Heygster G. 2001. Sea-ice concentration retrieval in the antarctic based on the SSM/I 85.5 GHz polarization. Annals of Glaciology, 33(1): 109–114
|
Kern S, Kaleschke L, Clausi D A. 2003. A comparison of two 85-GHz SSM/I ice concentration algorithms with AVHRR and ERS-2 SAR imagery. IEEE Transactions on Geoscience and Remote Sensing, 41(10): 2294–2306, doi: 10.1109/TGRS.2003.817181
|
Kern S, Rösel A, Pedersen L T, et al. 2016. The impact of melt ponds on summertime microwave brightness temperatures and sea-ice concentrations. The Cryosphere, 10(5): 2217–2239, doi: 10.5194/tc-10-2217-2016
|
Korosov A A, Rampal P, Pedersen L T, et al. 2018. A new tracking algorithm for sea ice age distribution estimation. The Cryosphere, 12(6): 2073–2085, doi: 10.5194/tc-12-2073-2018
|
Li Peiji. 1996. The arctic sea ice and climate change. Journal of Glaciolgy and Geocryology (in Chinese), 18(1): 72–80
|
Markus T, Cavalieri D J. 2000. An enhancement of the NASA team sea ice algorithm. IEEE Transactions on Geoscience and Remote Sensing, 38(3): 1387–1398, doi: 10.1109/36.843033
|
NSIDC. 2010. Special Sensor Microwave/Imager (SSM/I) and Special Sensor Microwave Imager Sounder (SSMIS) Global Gridded Products. Silver Spring: National Environmental Satellite, Data, and Information Service (NESDIS), NOAA
|
Schmidtko S, Heywood K J, Thompson A F, et al. 2014. Multidecadal warming of Antarctic waters. Science, 346(6214): 1227–1231, doi: 10.1126/science.1256117
|
Spencer R W, Goodman H M, Hood R E. 1989. Precipitation retrieval over land and ocean with the SSM/I: identification and characteristics of the scattering signal. Journal of Atmospheric and Oceanic Technology, 6(2): 254–273, doi: 10.1175/1520-0426(1989)006<0254:PROLAO>2.0.CO;2
|
Spreen G, Kaleschke L, Heygster G. 2008. Sea ice remote sensing using AMSR-E 89-GHz channels. Journal of Geophysical Research: Oceans, 113(C2): C02S03
|
Su Jie, Hao Guanghua, Ye Xinxin, et al. 2013. The experiment and validation of sea ice concentration AMSR-E retrieval algorithm in polar region. Journal of Remote Sensing (in Chinese), 17(3): 495–513
|
Svendsen E, Matzler C, Grenfell T C. 1987. A model for retrieving total sea ice concentration from a spaceborne dual-polarized passive microwave instrument operating near 90 GHz. International Journal of Remote Sensing, 8(10): 1479–1487, doi: 10.1080/01431168708954790
|
Swift C, Cavalieri D. 1985. Passive microwave remote sensing for sea ice research. Eos, Transactions American Geophysical Union, 66(49): 1210–1212, doi: 10.1029/EO066i049p01210
|
Tschudi M, Fowler C, Maslanik J, et al. 2016. Polar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors, Version 3. Boulder, Colorado, USA: NASA National Snow and Ice Data Center Distributed Active Archive Center, doi: https://doi.org/10.5067/O57VAIT2AYYY
|
Wang Huanhuan. 2009. Multiyear ice retrieval using passive microwave remote sensing radiometer AMSR-E 89GHz data (in Chinese) [dissertation]. Qingdao: Ocean University of China
|
Ye Yufang, Heygster G, Shokr M. 2016. Improving multiyear ice concentration estimates with reanalysis air temperatures. IEEE Transactions on Geoscience and Remote Sensing, 54(5): 2602–2614, doi: 10.1109/TGRS.2015.2503884
|
Zhang Shugang. 2012. Sea ice concentration algorithm and study on the physical process about sea ice and melt-pond change in Central Arctic (in Chinese) [dissertation]. Qingdao: Ocean University of China
|
Zhang Xiang, Wang Zhenzhan, Shen Hua. 2012. A sea ice concentration algorithm based on HY-2 scanning radiometer data. Remote Sensing Technology and Application (in Chinese), 27(6): 912–918
|