Zeng Zhi, Chen Xueen, Yuan Chunxin, Tang Shengquan, Chi Lequan. A numerical study of generation and propagation of type-a and type-b internal solitary waves in the northern South China Sea[J]. Acta Oceanologica Sinica, 2019, 38(11): 20-30. doi: 10.1007/s13131-019-1495-2
Citation: Zeng Zhi, Chen Xueen, Yuan Chunxin, Tang Shengquan, Chi Lequan. A numerical study of generation and propagation of type-a and type-b internal solitary waves in the northern South China Sea[J]. Acta Oceanologica Sinica, 2019, 38(11): 20-30. doi: 10.1007/s13131-019-1495-2

A numerical study of generation and propagation of type-a and type-b internal solitary waves in the northern South China Sea

doi: 10.1007/s13131-019-1495-2
  • Received Date: 2018-09-19
  • Numerical simulations based on a high-resolution three-dimensional MIT general circulation model (MITgcm) using realistic topography and tidal forcing are conducted to investigate the generation and propagation of the so-called type-a waves (large-amplitude rank-ordered wave packets) and type-b waves (isolated wave packets) in the northern South China Sea. At first, we summarized and analyzed the generation and propagation characteristics of these waves. Then, energy budget at the Luzon Strait is calculated. Energy generation has three local maxima every day, of which the largest one corresponds to the emergence of the type-a wave. Energy flux at the west boundary of the Luzon Strait shows two local maxima each day. The larger one is consistent with the generation of the type-a wave and the smaller one is in correspondence with the generation of the type-b wave. Sensitivity experiments are designed to explore the role of the east and west ridge of the Luzon Strait on the generation and propagation of the type-a and type-b waves. It is found that the east ridge is indispensable on the generation of the type-a wave while the west ridge has little contribution. The west ridge diminishes the type-a waves' amplitude but hardly changes their propagation speed. The type-b waves also come from perturbation signals which originate from the east ridge and are enhanced in amplitude and reduced in propagation speed by the west ridge.
  • loading
  • Alford M H, Lien R C, Simmons H, et al. 2010. Speed and evolution of nonlinear internal waves transiting the South China Sea. Journal of Physical Oceanography, 40(6):1338-1355, doi: 10.1175/2010JPO4388.1
    Alford M H, MacKinnon J A, Nash J D, et al. 2011. Energy flux and dissipation in Luzon Strait:two tales of two ridges. Journal of Physical Oceanography, 41(11):2211-2222, doi: 10.1175/JPO-D-11-073.1
    Alford M H, Peacock T, MacKinnon J A, et al. 2015. The formation and fate of internal waves in the South China Sea. Nature, 521(7550):65-69, doi: 10.1038/nature14399
    Buijsman M C, Kanarska Y, McWilliams J C. 2010. On the generation and evolution of nonlinear internal waves in the south china sea. Journal of Geophysical Research:Oceans, 115(C2):C02012, doi: 10.1175/2011JPO4587.1
    Buijsman M C, Klymak J M, Legg S, et al. 2014. Three-dimensional double-ridge internal tide resonance in Luzon Strait. Journal of Physical Oceanography, 44(3):850-869, doi: 10.1175/JPO-D-13-024.1
    Buijsman M C, Legg S, Klymak J. 2012. Double-ridge internal tide interference and its effect on dissipation in Luzon Strait. Journal of Physical Oceanography, 42(8):1337-1356, doi: 10.1175/JPO-D-11-0210.1
    Chen Guanyu, Liu C T, Wang Yuhuai, et al. 2011. Interaction and generation of long-crested internal solitary waves in the South China Sea. Journal of Geophysical Research:Oceans, 116(C6):C06013, doi: 10.1029/2010jc006392
    Cummins P F, Oey L Y. 1997. Simulation of barotropic and baroclinic tides off northern British Columbia. Journal of Physical Oceanography, 27(5):762-781, doi: 10.1175/1520-0485(1997)027<0762:SOBABT>2.0.CO;2
    Du Tao, Tseng Y H, Yan Xiaohai. 2008. Impacts of tidal currents and Kuroshio intrusion on the generation of nonlinear internal waves in Luzon Strait. Journal of Geophysical Research:Oceans, 113(C8):C08015, doi: 10.1029/2007JC004294
    Farmer D, Alford M H, Lien R C, et al. 2011. From Luzon Strait to Dongsha Plateau:stages in the life of an internal wave. Oceanography, 24(4):64-77, doi: 10.5670/oceanog.2011.95
    Farmer D, Li Qiang, Park J H. 2009. Internal wave observations in the South China Sea:the role of rotation and non-linearity. Atmosphere-Ocean, 47(4):267-280, doi: 10.3137/OC313.2009
    Guo Chuncheng, Chen Xueen. 2014. A review of internal solitary wave dynamics in the northern South China Sea. Progress in Oceanography, 121:7-23, doi: 10.1016/j.pocean.2013.04.002
    Guo Chuncheng, Chen Xueen, Vlasenko V, et al. 2011. Numerical investigation of internal solitary waves from the Luzon Strait:generation process, mechanism and three-dimensional effects. Ocean Modelling, 38(3-4):203-216, doi: 10.1016/j.ocemod.2011.03.002
    Hsu M K, Liu A K, Liu Cheng. 2000. A study of internal waves in the China Seas and Yellow Sea using SAR. Continental Shelf Research, 20(4-5):389-410, doi: 10.1016/S0278-4343(99)00078-3
    Jan S, Lien R C, Ting Chihua. 2008. Numerical study of baroclinic tides in Luzon Strait. Journal of Oceanography, 64(5):789-802, doi: 10.1007/s10872-008-0066-5
    Kerry C G, Powell B S, Carter G S. 2014. The impact of subtidal circulation on internal tide generation and propagation in the Philippine Sea. Journal of Physical Oceanography, 44(5):1386-1405, doi: 10.1175/JPO-D-13-0142.1
    Large W G, McWilliams J C, Doney S C. 1994. Oceanic vertical mixing:a review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics, 32(4):363-403, doi: 10.1029/94RG01872
    Niwa Y, Hibiya T. 2004. Three-dimensional numerical simulation of M2 internal tides in the East China Sea. Journal of Geophysical Research:Oceans, 109(C4):C04027, doi: 10.1029/2003JC001923
    Ramp S R, Tang T Y, Duda T F, et al. 2004. Internal solitons in the northeastern South China Sea. Part I:sources and deep water propagation. IEEE Journal of Oceanic Engineering, 29(4):1157-1181, doi: 10.1109/joe.2004.840839
    Ramp S R, Yang Y J, Bahr F L. 2010. Characterizing the nonlinear internal wave climate in the northeastern South China Sea. Nonlinear Processes in Geophysics, 17(5):481-498, doi: 10.5194/npg-17-481-2010
    Shaw P T, Ko D S, Chao S Y. 2009. Internal solitary waves induced by flow over a ridge:with applications to the northern South China Sea. Journal of Geophysical Research:Oceans, 114(C2):C02019, doi: 10.1029/2008JC005007
    Vlasenko V, Guo Chuncheng, Stashchuk N. 2012. On the mechanism of A-type and B-type internal solitary wave generation in the northern South China Sea. Deep Sea Research Part I:Oceanographic Research Papers, 69:100-112, doi: 10.1016/j.dsr.2012.07.004
    Vlasenko V, Sanchez Garrido J C, Stashchuk N, et al. 2009. Three-dimensional evolution of large-amplitude internal waves in the Strait of Gibraltar. Journal of Physical Oceanography, 39(9):2230-2246, doi: 10.1175/2009JPO4007.1
    Vlasenko V, Stashchuk N. 2007. Three-dimensional shoaling of large-amplitude internal waves. Journal of Geophysical Research:Oceans, 112(C11):C11018, doi: 10.1029/2007JC004107
    Vlasenko V, Stashchuk N, Inall M E, et al. 2014. Tidal energy conversion in a global hot spot:on the 3-D dynamics of baroclinic tides at the Celtic Sea shelf break. Journal of Geophysical Research:Oceans, 119(6):3249-3265, doi: 10.1002/2013JC009708
    Xu Zhenhua, Liu Kun, Yin Baoshu, et al. 2016. Long-range propagation and associated variability of internal tides in the South China Sea. Journal of Geophysical Research:Oceans, 121(11):8268-8286, doi: 10.1002/2016JC012105
    Zhang Z, Fringer O B, Ramp S R. 2011. Three-dimensional, nonhydrostatic numerical simulation of nonlinear internal wave generation and propagation in the South China Sea. Journal of Geophysical Research:Oceans, 116(C5):C05022, doi: 10.1029/2010JC006424
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (589) PDF downloads(182) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return