Mo Dongxue, Liu Yahao, Hou Yijun, Liu Ze. Bimodality and growth of the spectra of typhoon-generated waves in northern South China Sea[J]. Acta Oceanologica Sinica, 2019, 38(11): 70-80. doi: 10.1007/s13131-019-1500-9
Citation: Mo Dongxue, Liu Yahao, Hou Yijun, Liu Ze. Bimodality and growth of the spectra of typhoon-generated waves in northern South China Sea[J]. Acta Oceanologica Sinica, 2019, 38(11): 70-80. doi: 10.1007/s13131-019-1500-9

Bimodality and growth of the spectra of typhoon-generated waves in northern South China Sea

doi: 10.1007/s13131-019-1500-9
  • Received Date: 2018-07-16
  • Buoy-based observations of wave spectra during the passage of three typhoons in the northern South China Sea are examined. Though most spectra of mature typhoon-generated waves are unimodal, double-peaked spectra account for a significant proportion during the growing and decaying stages. This is due either to the superposition of swells on local wind waves or to the mechanism of nonlinear interaction between different wave components. The growth rate of energy density is an effective way to predict spectrum variation. The dominant wave direction depends on the location of the typhoon center to the site, but the direction spread shows no regularity in distant regions. In this study, a new six-parameter spectral formula is proposed to represent double-peaked spectra and is shown to provide a better fit than previous models. The theoretical relationship between shape parameter and spectral width is still applicable to each peak. The characteristics of the variations of spectral parameters are analyzed. It is demonstrated that the spectral parameters are not only related to the typhoon intensity and typhoon track, but also have strong intercorrelations. Moreover, the growth relation between significant wave height and significant wave period is obtained to fit the typhoon-generated waves.
  • loading
  • Chen Shuyi, Curcic M. 2016. Ocean surface waves in Hurricane Ike (2008) and Superstorm Sandy (2012):coupled model predictions and observations. Ocean Modelling, 103:161-176, doi: 10.1016/j.ocemod.2015.08.005
    Chen J M, Tan Peihua, Wu Liang, et al. 2017. Climatological analysis of passage-type tropical cyclones from the Western North Pacific into the South China Sea. Terrestrial, Atmospheric and Oceanic Sciences, 28(3):327-343, doi: 10.3319/TAO.2016.10.04.02
    Davidan I N. 1980. Investigation of wave probability structure on field data. Trudi GOIN (in Russian), 151:8-26
    Donelan M A, Hamilton J, Hui W H. 1985. Directional spectra of wind-generated ocean waves. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 315(1534):509-562, doi: 10.1098/rsta.1985.0054
    Doong D J, Tsai L H, Kao C C, et al. 2001. A wave spectra study of the typhoon across Taiwan. In:Proceedings of the 4th International Symposium on Ocean Wave Measurement and Analysis. San Francisco:ASCE, 963-971
    Emanuel K, Sundararajan R, Williams J. 2008. Hurricanes and global warming:results from downscaling IPCC AR4 simulations. Bulletin of the American Meteorological Society, 89(3):347-368, doi: 10.1175/BAMS-89-3-347
    Ewans K C, Kibblewhite A C. 1990. An examination of fetch-limited wave growth off the west coast of New Zealand by a comparison with the JONSWAP results. Journal of Physical Oceanography, 20(9):1278-1296, doi: 10.1175/1520-0485(1990)020<1278:AEOFLW>2.0.CO;2
    Forristall G Z. 1981. Measurements of a saturated range in ocean wave spectra. Journal of Geophysical Research, 86(C9):8075-8084, doi: 10.1029/JC086iC09p08075
    Hasselmann K, Barnett T P, Bouws E, et al. 1973. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Hamburg:Deutches Hydrographisches Institute, A8(12):1-95
    Huang Qian, Guan Yuping. 2012. Does the Asian monsoon modulate tropical cyclone activity over the South China Sea?. Chinese Journal of Oceanology and Limnology, 30(6):960-965, doi: 10.1007/s00343-012-1273-x
    Kahma K K. 1981. A study of the growth of the wave spectrum with fetch. Journal of Physical Oceanography, 11(11):1503-1515, doi: 10.1175/1520-0485(1981)011<1503:ASOTGO>2.0.CO;2
    Lan Changhua. 1984. A preliminary study on typhoon generated waves in the sea area near Hong Kong. Tropic Oceanology (in Chinese), 3(3):10-17
    Liu P C. 2000. Is the wind wave frequency spectrum outdated. Ocean Engineering, 27(5):577-588, doi: 10.1016/S0029-8018(98)00074-2
    Liu Yahao, Hou Yijun, Hu Po, et al. 2015. Effect of wave spectrum width on the probability density distribution of wind-wave heights. Chinese Journal of Oceanology and Limnology, 33(5):1124-1131, doi: 10.1007/s00343-015-4126-6
    Moon I J, Ginis I, Hara T, et al. 2003. Numerical simulation of sea surface directional wave spectra under hurricane wind forcing. Journal of Physical Oceanography, 33(8):1680-1706, doi: 10.1175/2410.1
    Ochi M K. 2003. Hurricane-Generated Seas. Amsterdam:Elsevier, 25–53
    Ochi M K, Hubble E N. 1976. Six-parameter wave spectra. In:Proceedings of the 15th International Conference on Coastal Engineering. Hawaii:American Society of Civil Engineers, 301–328
    Ren Xuhe, Xie Botao, Song Zhuanling. 2014. Statistical characteristics of the double-peaked wave spectra in the deep area of the South China Sea. Advances in Marine Science (in Chinese), 32(2):148-154
    Soares C G. 1984. Representation of double-peaked sea wave spectra. Ocean Engineering, 11(2):185-207, doi: 10.1016/0029-8018(84)90019-2
    Toba Y. 1972. Local balance in the air-sea boundary process I. On the growth process of wind waves. Journal of Oceanography, 28(3):109-120, doi: 10.1007/BF02109772
    Toba Y. 1973. Local balance in the air-sea boundary process III. On the spectrum of wind waves. Journal of the Oceanographical Society of Japan, 29(5):209-220, doi: 10.1007/BF02108528
    Torsethaugen K, Haver S. 2004. Simplified double peak spectral model for ocean waves. In:Proceedings of the 14th International Offshore and Polar Engineering Conference. Toulon:International Society of Offshore and Polar Engineers
    Vimala J, Latha G, Venkatesan R. 2014. Validation of in situ wave spectrum with JONSWAP in the Indian Ocean. International Journal of Remote Sensing, 35(14):5384-5393, doi: 10.1080/01431161.2014.926421
    Walsh E J, Wright C W, Vandemark D, et al. 2002. Hurricane directional wave spectrum spatial variation at landfall. Journal of Physical Oceanography, 32(6):1667-1684, doi: 10.1175/1520-0485(2002)032<1667:HDWSSV>2.0.CO;2
    Wang Lei, Guo Zhiliang. 2014. Modulation of tropical cyclogenesis over the South China Sea by ENSO Modoki during boreal summer. Journal of Ocean University of China, 13(2):223-235, doi: 10.1007/s11802-014-2128-1
    Wang Guihua, Su Jilan, Ding Yihui, et al. 2007. Tropical cyclone genesis over the South China Sea. Journal of Marine Systems, 68(3-4):318-326, doi: 10.1016/j.jmarsys.2006.12.002
    Webster P J, Holland G J, Curry J A, et al. 2005. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309(5742):1844-1846, doi: 10.1126/science.1116448
    Wen Shengchang, Zhang Dacuo, Guo Peifang, et al. 1989. Parameters in wind-wave frequency spectra and their bearings on spectrum forms and growth. Acta Oceanologica Sinica, 8(1):15-39
    Whalen J E, Ochi M K. 1978. Variability of wave spectral shapes associated with hurricanes. In:Proceedings of the 10th Offshore Technology Conference. Houston:Offshore Technology Conference
    Xu Fuxiang. 1996. The spatial and temporal distribution of disastrous waves in the offshore and adjacent waters of China. Haiyang Xuebao (in Chinese), 18(2):26-31
    Yang Shengqiang, Hou Yijun, Liu Yahao. 2015. Observed typhoon wave spectrum in northern South China Sea. Chinese Journal of Oceanology and Limnology, 33(5):1286-1294, doi: 10.1007/s00343-015-4307-3
    Yang Bin, Shi Weiyong, Ye Qin, et al. 2017. Characteristics of waves in coastal waters of northeast Zhoushan Island during typhoons. Advances in Water Science (in Chinese), 28(1):106-115
    Young I R. 1998. Observations of the spectra of hurricane generated waves. Ocean Engineering, 25(4-5):261-276, doi: 10.1016/S0029-8018(97)00011-5
    Young I R. 2006. Directional spectra of hurricane wind waves. Journal of Geophysical Research, 111(C8):C08020
    Zhou Liangming, Wang Aifang, Guo Peifang. 2008. Numerical simulation of sea surface directional wave spectra under typhoon wind forcing. Journal of Hydrodynamics, Series B, 20(6):776-783, doi: 10.1016/S1001-6058(09)60015-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (380) PDF downloads(185) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return