Zha Guozhen, Xu Dewei, Yang Yanming, Song Xin'gai, Zhong Fuhuang. An accelerated nonlocal means algorithm for synthetic aperture radar ocean image despeckling[J]. Acta Oceanologica Sinica, 2019, 38(11): 140-148. doi: 10.1007/s13131-019-1504-5
Citation: Zha Guozhen, Xu Dewei, Yang Yanming, Song Xin'gai, Zhong Fuhuang. An accelerated nonlocal means algorithm for synthetic aperture radar ocean image despeckling[J]. Acta Oceanologica Sinica, 2019, 38(11): 140-148. doi: 10.1007/s13131-019-1504-5

An accelerated nonlocal means algorithm for synthetic aperture radar ocean image despeckling

doi: 10.1007/s13131-019-1504-5
  • Received Date: 2018-06-24
  • Synthetic aperture radar (SAR) images play an increasingly important role in ocean environmental monitoring and research. However, SAR images are inherently corrupted by speckle noise. SAR ocean images have some unique characteristics. The signatures of ocean phenomena in SAR images mainly exhibit as stripe or plaque shaped features. These features typically have a high degree of self-similarity or redundancy. The nonlocal means (NLM) method can measure the structural similarity between different image patches and take advantage of redundant information in images. Considering that the NLM algorithm is computationally intensive and time-consuming, an accelerated NLM algorithm for SAR ocean image despeckling is proposed in this paper. A method is used to discriminate between texture and flat pixels in SAR images. Large similarity and search windows are used on texture pixels, whereas small similarity and search windows are used on flat pixels. Furthermore, the improved NLM algorithm is accelerated by a graphic processing unit (GPU) based on the compute unified device architecture (CUDA) parallel computation framework. The computational efficiency is improved by approximately 200 times.
  • loading
  • Achim A, Tsakalides P, Bezerianos A. 2003. SAR image denoising via Bayesian wavelet shrinkage based on heavy-tailed modeling. IEEE Transactions on Geoscience and Remote Sensing, 41(8):1773-1784, doi: 10.1109/TGRS.2003.813488
    Alpers W, Brandt P, Lazar A, et al. 2013. A small-scale oceanic eddy off the coast of west Africa studied by multi-sensor satellite and surface drifter data. Remote Sensing of Environment, 129:132-143, doi: 10.1016/j.rse.2012.10.032
    Argenti F, Alparone L. 2002. Speckle removal from SAR images in the undecimated wavelet domain. IEEE Transactions on Geoscience and Remote Sensing, 40(11):2363-2374, doi: 10.1109/TGRS.2002.805083
    Aubert G, Aujol J F. 2008. A variational approach to removing multiplicative noise. SIAM Journal on Applied Mathematics, 68(4):925-946, doi: 10.1137/060671814
    Bilcu R C, Vehvilainen M. 2007. Fast nonlocal means for image denoising. In:Proceedings of SPIE 6502, Digital Photography III. San Jose, CA, USA:SPIE, doi: 10.1117/12.695079
    Buades A, Coll B, Morel J M. 2005. A review of image denoising algorithms, with a new one. Multiscale Modeling & Simulation, 4(2):490-530
    Cuomo S, de Michele P, Piccialli F. 2014. 3D Data denoising via nonlocal means filter by using parallel GPU strategies. Computational and Mathematical Methods in Medicine, 2014:523862, doi: 10.1155/2014/523862
    Dabov K, Foi A, Katkovnik V, et al. 2007. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Transactions on Image Processing, 16(8):2080-2095, doi: 10.1109/TIP.2007.901238
    Deledalle C A, Duval V, Salmon J. 2012. Non-local methods with shape-adaptive patches (NLM-SAP). Journal of Mathematical Imaging and Vision, 43(2):103-120, doi: 10.1007/s10851-011-0294-y
    Feng Chaolu, Zhao Dazhe, Huang Min. 2016. Image segmentation using CUDA accelerated non-local means denoising and bias correction embedded fuzzy c-means (BCEFCM). Signal Processing, 122:164-189, doi: 10.1016/j.sigpro.2015.12.007
    Foucher S, Farage G, Benie G. 2006. SAR image filtering based on the stationary contourlet transform. In:Proceeding of 2006 IEEE International Symposium on Geoscience and Remote Sensing. Denver, Colorado, USA:IEEE, 4021–4024
    Frost V S, Stiles J A, Shanmugan K S, et al. 1982. A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-4(2):157-166
    Goossens B, Luong H, Aelterman J, et al. 2010. A GPU-accelerated real-time NLMeans algorithm for denoising color video sequences. In:Proceedings of the 12th International Conference on Advanced Concepts for Intelligent Vision Systems. Sydney, Australia:Springer, 46–57, doi: 10.1007/978-3-642-17691-3_5
    Johannessen J A, Shuchman R A, Digranes G, et al. 1996. Coastal ocean fronts and eddies imaged with ERS 1 synthetic aperture radar. Journal of Geophysical Research, 101(C3):6651-6667, doi: 10.1029/95JC02962
    Katkovnik V, Foi A, Egiazarian K, Astola J. 2010. From local kernel to nonlocal multiple-model image denoising. International Journal of Computer Vision, 86(1):1-32, doi: 10.1007/s11263-009-0272-7
    Kervrann C, Boulanger J, Coupé P. 2007. Bayesian non-local means filter, image redundancy and adaptive dictionaries for noise removal. In:Proceeding of the 1st International Conference on Scale Space and Variational Methods in Computer Vision. Ischia, Italy:Springer, 4485:520-532
    Kuan D, Sawchuk A, Strand T, et al. 1987. Adaptive restoration of images with speckle. IEEE Transactions on Acoustics, Speech, and Signal Processing, 35(3):373-383, doi: 10.1109/TASSP.1987.1165131
    Lee J S. 1980. Digital image enhancement and noise filtering by use of local statistics. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-2(2):165–168
    Li Ying, Gong Hongli, Feng Dagan, et al. 2011. An adaptive method of speckle reduction and feature enhancement for SAR images based on curvelet transform and particle swarm optimization. IEEE Transactions on Geoscience and Remote Sensing, 49(8):3105-3116, doi: 10.1109/TGRS.2011.2121072
    Li Xiaoming, Lehner S, Bruns T. 2014. Simultaneous measurements by advanced SAR and radar altimeter on potential improvement of ocean wave model assimilation. IEEE Transactions on Geoscience and Remote Sensing, 52(5):2508-2518, doi: 10.1109/TGRS.2013.2262137
    Liu A K, Chang Y S, Hsu M K, et al. 1998. Evolution of nonlinear internal waves in the East and South China Sea. Journal of Geophysical Research, 103(C4):7995-8008, doi: 10.1029/97JC01918
    Lopes A, Touz R, Nezry E. 1990. Adaptive speckle filters and scene heterogeneity. IEEE Transactions on Geoscience and Remote Sensing, 28(6):992-1000, doi: 10.1109/36.62623
    Márques A, Pardo A. 2013. Implementation of non local means filter in GPUs. In:Proceedings of the 18th Iberoamerican Congress Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. Havana, Cuba:Springer, 407–414, doi: 10.1007/978-3-642-41822-8_51
    Parrilli S, Poderico M, Angelino C V, et al. 2012. A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage. IEEE Transactions on Geoscience and Remote Sensing, 50(2):606-616, doi: 10.1109/TGRS.2011.2161586
    Shen Hui, Perrie W, Liu Qingrong, et al. 2014. Detection of macroalgae blooms by complex SAR imagery. Marine Pollution Bulletin, 78(1-2):190-195, doi: 10.1016/j.marpolbul.2013.10.044
    Solberg A H S, Brekke C, Husoy P O. 2007. Oil spill detection in Radarsat and Envisat SAR images. IEEE Transactions on Geoscience and Remote Sensing, 45(3):746-755, doi: 10.1109/TGRS.2006.887019
    Vignesh R, Tae Oh B, Jay Kuo C C. 2010. Fast non-local means (NLM) computation with probabilistic early termination. IEEE Signal Processing Letters, 17(3):277-280, doi: 10.1109/LSP.2009.2038956
    Walessa M, Datcu M. 2000. Model-based despeckling and information extraction from SAR images. IEEE Transactions on Geoscience and Remote Sensing, 38(5):2258-2269, doi: 10.1109/36.868883
    Wang Jin, Guo Yanwen, Ying Yiting, et al. 2006. Fast non-local algorithm for image denoising. In:Proceedings of 2006 IEEE International Conference on Image Processing. Atlanta, GA, USA:IEEE, 1429–1432, doi: 10.1109/ICIP.2006.312698
    Wang Juan, Huang Weigen, Yang Jingsong, et al. 2013. Study of the propagation direction of the internal waves in the South China Sea using satellite images. Acta Oceanologica Sinica, 32(5):42-50, doi: 10.1007/s13131-013-0312-6
    Wu Yifeng, Maitre H. 1992. Smoothing speckled synthetic aperture radar images by using maximum homogeneous region filters. Optical Engineering, 31(8):1785-1792, doi: 10.1117/12.59897
    Xie Hua, Pierce L E, Ulaby F T. 2002. SAR speckle reduction using wavelet denoising and Markov random field modeling. IEEE Transactions on Geoscience and Remote Sensing, 40(10):2196-2212, doi: 10.1109/TGRS.2002.802473
    Xue Bindang, Huang Yuan, Yang Jihong, et al. 2013. Fast nonlocal remote sensing image denoising using cosine integral images. IEEE Geoscience and Remote Sensing Letters, 10(6):1309-1313, doi: 10.1109/LGRS.2013.2238603
    Yang Jungang, Zhang Jie, Meng Junmin. 2010. A detection model of underwater topography with a series of SAR images acquired at different time. Acta Oceanologica Sinica, 29(4):28-37, doi: 10.1007/s13131-010-0048-5
    Zheng Quanan, Susanto R D, Ho C R, et al. 2007. Statistical and dynamical analyses of generation mechanisms of solitary internal waves in the northern South China Sea. Journal of Geophysical Research, 112(C3):C03021, doi: 10.1029/2006JC003551
    Zhong Hua, Zhang Jingjing, Liu Ganchao. 2014. Robust polarimetric SAR despeckling based on nonlocal means and distributed Lee filter. IEEE Transactions on Geoscience and Remote Sensing, 52(7):4198-4210, doi: 10.1109/TGRS.2013.2280278
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (342) PDF downloads(145) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return