Gozari Mohsen, Bahador Nima, Jassbi Amir Reza, Mortazavi Mohammad Seddiq, Hamzehei Samad, Eftekhar Ebrahim. Isolation, distribution and evaluation of cytotoxic and antioxidant activity of cultivable actinobacteria from the Oman Sea sediments[J]. Acta Oceanologica Sinica, 2019, 38(12): 84-90. doi: 10.1007/s13131-019-1515-2
Citation: Gozari Mohsen, Bahador Nima, Jassbi Amir Reza, Mortazavi Mohammad Seddiq, Hamzehei Samad, Eftekhar Ebrahim. Isolation, distribution and evaluation of cytotoxic and antioxidant activity of cultivable actinobacteria from the Oman Sea sediments[J]. Acta Oceanologica Sinica, 2019, 38(12): 84-90. doi: 10.1007/s13131-019-1515-2

Isolation, distribution and evaluation of cytotoxic and antioxidant activity of cultivable actinobacteria from the Oman Sea sediments

doi: 10.1007/s13131-019-1515-2
  • Received Date: 2018-12-17
  • Screening bioactive natural products from bacteria is a determinative step in the drug discovery programs. The present study aim to isolate actinobacteria from the Oman Sea sediments for determining the effects of different culture media and treatments on the yield of the isolation process, and measure the DPPH radical scavenging and Artemia cytotoxic activity of culture extracts of the actinobacterial isolates. A total of 290 actinobacterial isolates were collected from 14 sediment samples. Heat treatment (40.68%) and M4 medium (29.31%) exhibited the maximum isolation rates of actinobacteria. Streptomyces isolates were dominantly distributed in all of the investigated stations according to 16S rRNA gene sequencing. The distribution pattern of Streptomyces followed a depth-dependent frequency trend, whereas the members of rare genera including Micromonospora, Nocardia Actinoplanes, Nocardiopsis, Saccharopolyspora and Crossiella were distributed in deeper stations. Approximately, 25% of the examined isolates could scavenge 90% of 10-4 mol/L DPPH solutions at 1 250 μg/mL final concentration of their ethyl acetate culture extracts. Furthermore, the most potent extracts could scavenge DPPH radicals with IC50 ranges from 356.8 to 566.4 μg/mL. Brine shrimp cytotoxicity tests showed that 38.88% of the examined culture extracts exhibited LC50 lower than 1 000 μg/mL against the Artemia cells. Moreover, the most potent culture extracts exhibited LC50 range from 335.4 to 534.4 μg/mL. Phylogenetic analysis by 16S rRNA gene sequence revealed that the OS 005, OS 263 and OS 157 closely related to Streptomyces djakartensis, Streptomyces olivaceus and Nocardiopsis dassonvillei respectively. These results suggested the widespread distribution of the antioxidant and cytotoxic producing actinobacteria in the Oman Sea sediments, which could be considered as promising candidates for the discovery of microbial bioactive compounds.
  • loading
  • Asolkar R N, Jensen P R, Kauffman C A, et al. 2006. Daryamides A-C, weakly cytotoxic polyketides from a marine-derived actinomycete of the genus Streptomyces strain CNQ-085. Journal of Natural Products, 69(12):1756-1759, doi: 10.1021/np0603828
    Atta-ur-Rahman, Choudhary M I, Thomsen W J. 2001. Bioassay Techniques for Drug Development. Amsterdam:Harwood Academic Publishers, 8–12
    Bredholt H, Galatenko O A, Engelhardt K, et al. 2007. Rare actinomycete bacteria from the shallow water sediments of the Trondheim fjord, Norway:isolation, diversity and biological activity. Environmental Microbiology, 9(11):2756-2764, doi: 10.1111/j.1462-2920.2007.01387.x
    Bredholt H, Fjærvik E, Johnsen G, et al. 2008. Actinomycetes from sediments in the Trondheim fjord, Norway:diversity and biological activity. Marine Drugs, 6(1):12-24, doi: 10.3390/md6010012
    Dasari V R R K, Muthyala M K K, Nikku M Y, et al. 2012. Novel Pyridinium compound from marine actinomycete, Amycolatopsis alba var. nov. DVR D4 showing antimicrobial and cytotoxic activities in vitro. Microbiological Research, 167(6):346-351, doi: 10.1016/j.micres.2011.12.003
    Doelle H W. 2014. Bacterial Metabolism. Amsterdam:Academic Press, 1-45
    Felsenstein J. 1985. Confidence limits on phylogenies:an approach using the bootstrap. Evolution, 39(4):783-791, doi: 10.1111/j.1558-5646.1985.tb00420.x
    Fenical W, Jensen P R, Palladino M A, et al. 2009. Discovery and development of the anticancer agent salinosporamide A (NPI-0052). Bioorganic & Medicinal Chemistry, 17(6):2175-2180
    Fu P, Johnson M, Chen H, et al. 2014. Carpatamides A-C, cytotoxic arylamine derivatives from a marine-derived Streptomyces sp. Journal of Natural Products, 77(5):1245-1248, doi: 10.1021/np500207p
    Gontang E A, Gaudêncio S P, Fenical W, et al. 2010. Sequence-based analysis of secondary-metabolite biosynthesis in marine actinobacteria. Applied and Environmental Microbiology, 76(8):2487-2499, doi: 10.1128/AEM.02852-09
    Gozari M, Bahador N, Jassbi A R, et al. 2018. Antioxidant and cytotoxic activities of metabolites produced by a new marine Streptomyces sp. isolated from the sea cucumber Holothuria leucospilota. Iranian Journal of Fisheries Sciences, 17(2):413-426
    Gozari M, Bahador N, Mortazavi M S, et al. 2019a. An "olivomycin A" derivative from a sponge-associated Streptomyces sp. strain SP 85. 3. Biotech, 9:439
    Gozari M, Mortazavi M S, Bahador N, et al. 2016a. Isolation and screening of antibacterial and enzyme producing marine actinobacteria to approach probiotics against some pathogenic vibrios in shrimp Litopenaeus vannamei. Iranian Journal of Fisheries Sciences, 15(1):630-644
    Gozari M, Mortazavi M S, Karim zadeh R, et al. 2016b. Isolation, Identification and Evaluation of antimicrobial activity of Actinomycetes from marine sediments of Persian Gulf (Hormozgan Province). Iranian Scientific Fisheries Journal (in Persian), 25:81-93
    Gozari M, Zaheri A, Jahromi S T, et al. 2019b. Screening and characterization of marine actinomycetes from the northern Oman Sea sediments for cytotoxic and antimicrobial activity. International Microbiology, 22(4):521-530, doi: 10.1007/s10123-019-00083-3
    Hameş-Kocabaş E E, Uzel A. 2012. Isolation strategies of marine-derived actinomycetes from sponge and sediment samples. Journal of Microbiological Methods, 88(3):342-347, doi: 10.1016/j.mimet.2012.01.010
    Istianto Y, Koesomowidodo R S A, Saputra H, et al. 2012. Application of phenol pretreatment for the isolation of rare Actinomycetes from Indonesian soil. Microbiology Indonesia, 6(1):42-47, doi: 10.5454/mi.6.1.7
    Jensen P R, Dwight R, Fenical W. 1991. Distribution of actinomycetes in near-shore tropical marine sediments. Applied and Environmental Microbiology, 57(4):1102-1108
    Jensen P R, Gontang E, Mafnas C, et al. 2005. Culturable marine actinomycete diversity from tropical Pacific Ocean sediments. Environmental Microbiology, 7(7):1039-1048, doi: 10.1111/j.1462-2920.2005.00785.x
    Karamouz M, Nazif S, Falahi M. 2012. Hydrology and Hydroclimatology:Principles and Applications. Boca Raton:CRC Press, 79–84
    Karthik L, Kumar G, Rao K V B. 2013. Antioxidant activity of newly discovered lineage of marine actinobacteria. Asian Pacific Journal of Tropical Medicine, 6(4):325-332, doi: 10.1016/S1995-7645(13)60065-6
    Kesavan S S S. 2015. Isolation, characterization and screening for anticancer property of sediment derived actinomycetes from South East coast of India. International Journal of Pharma and Bio Sciences, 6(1):491-498
    Kieser T, Bibb M J, Buttner M J, et al. 2000. Practical Streptomyces Genetics. Norwich, England:John Innes Foundation
    Kumar S, Stecher G, Tamura K. 2016. MEGA7:Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7):1870-1874, doi: 10.1093/molbev/msw054
    Kurtböke D İ. 2017. Ecology and habitat distribution of actinobacteria. In:Wink J, Mohammadipanah F, Hamedi J, eds. Biology and Biotechnology of Actinobacteria. Cham:Springer, 123–149
    Lee D R, Lee S K, Choi B K, et al. 2014. Antioxidant activity and free radical scavenging activities of Streptomyces sp. strain MJM 10778. Asian Pacific Journal of Tropical Medicine, 7(12):962-967, doi: 10.1016/S1995-7645(14)60170-X
    Leong L P, Shui G. 2002. An investigation of antioxidant capacity of fruits in Singapore markets. Food Chemistry, 76(1):69-75, doi: 10.1016/S0308-8146(01)00251-5
    Madden T. 2013. The BLAST sequence analysis tool. The NCBI Handbook[Internet]. Bethesda, MD:National Library of Medicine (US), National Center for Biotechnology Information
    Mahmoud H M, Kalendar A A. 2016. Coral-associated Actinobacteria:diversity, abundance, and biotechnological potentials. Frontiers in Microbiology, 7:204
    Maldonado L A, Fragoso-Yáñez D, Pérez-García A, et al. 2009. Actinobacterial diversity from marine sediments collected in Mexico. Antonie van Leeuwenhoek, 95(2):111-120, doi: 10.1007/s10482-008-9294-3
    Manivasagan P, Venkatesan J, Sivakumar K, et al. 2014. Pharmaceutically active secondary metabolites of marine actinobacteria. Microbiological Research, 169(4):262-278, doi: 10.1016/j.micres.2013.07.014
    Mann K H, Lazier J R. 2013. Dynamics of Marine Ecosystems:Biological-Physical Interactions in the Oceans. Oxford:John Wiley & Sons, 7–67
    Meyer B N, Ferrigni N R, Putnam J E, et al. 1982. Brine shrimp:a convenient general bioassay for active plant constituents. Planta Medica, 45(5):31-34, doi: 10.1055/s-2007-971236
    Mincer T J, Fenical W, Jensen P R. 2005. Culture-dependent and culture-independent diversity within the obligate marine actinomycete genus Salinispora. Applied and Environmental Microbiology, 71(11):7019-7028, doi: 10.1128/AEM.71.11.7019-7028.2005
    Olano C, Méndez C, Salas J A. 2009. Antitumor compounds from marine actinomycetes. Marine Drugs, 7(2):210-248, doi: 10.3390/md7020210
    Orr H A. 2005. The genetic theory of adaptation:a brief history. Nature Reviews Genetics, 6(2):119-127, doi: 10.1038/nrg1523
    Palaniappan S, Panchanathan M, Packiyaraj V, et al. 2013. Antibacterial and brine shrimp lethality effect of marine actinobacterium Streptomyces sp. CAS72 against human pathogenic bacteria. Asian Pacific Journal of Tropical Disease, 3(4):286-293, doi: 10.1016/S2222-1808(13)60071-7
    Qiu D H, Ruan J S, Huang Y. 2008. Selective isolation and rapid identification of members of the genus Micromonospora. Applied and Environmental Microbiology, 74(17):5593-5597, doi: 10.1128/AEM.00303-08
    Saitou N, Nei M. 1987. The neighbor-joining method:a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4):406-425
    Seidel V. 2006. Initial and bulk extraction. In:Sarker S D, Latif Z, Gray A I, eds. Natural Products Isolation. New Jersey:Humana Press, 27–46
    Ser H L, Palanisamy U D, Yin W F, et al. 2016. Streptomyces malaysiense sp. nov.:a novel Malaysian mangrove soil actinobacterium with antioxidative activity and cytotoxic potential against human cancer cell lines. Scientific Reports, 6:24247, doi: 10.1038/srep24247
    Ser H L, Tan LT H, Law JW F, et al. 2017. Focused review:cytotoxic and antioxidant potentials of mangrove-derived Streptomyces. Frontiers in Microbiology, 8:2065, doi: 10.3389/fmicb.2017.02065
    Solan M, Whiteley N. 2016. Stressors in the Marine Environment:Physiological and Ecological Responses; Societal Implications. Oxford:Oxford University Press, 70–91
    Whitman W, Goodfellow M, Kämpfer P, et al. 2012. Bergey's Manual® of Systematic Bacteriology:Volume Five. The Actinobacteria, Part A. 2nd ed. New York:Springer
    Zotchev S B, Sekurova O N, Kurtböke D İ. 2017. Metagenomics of marine actinomycetes:from functional gene diversity to biodiscovery. In:Kim S K, ed. Marine OMICS:Principles and Applications. Boca Raton:CRC Press, 165–186
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (462) PDF downloads(121) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return