Citation: | Xin’an Wang, Aijun Ma. Dynamic genetic analysis for body weight and main length ratio in turbot Scophthalmus maximus[J]. Acta Oceanologica Sinica, 2020, 39(2): 22-27. doi: 10.1007/s13131-020-1551-y |
[1] |
Ankorion Y, Moav R, Wohlfarth G W. 1992. Bidirectional mass selection for body shape in common carp. Genetics Selection Evolution, 24: 43. doi: 10.1186/1297-9686-24-1-43
|
[2] |
Awan Z K, Masood S A, Naseem Z, et al. 2015. Genetic variability and trait association for relative growth rate and green fodder yield in Sorghum bicolorl. International Journal of Biology Pharmacy and Allied Sciences, 4(8): 5566–5576
|
[3] |
Battaglene S C. 1996. Hormone-induced ovulation of sand whiting (Sillago ciliate). Asian Fisheries Science, 9: 169–176
|
[4] |
Blonk R J W, Komen J, Tenghe A, et al. 2010. Heritability of shape in common sole, Solea solea, estimated from image analysis data. Aquaculture, 307(1–2): 6–11. doi: 10.1016/j.aquaculture.2010.06.025
|
[5] |
Cardellino R, Rovira J. 1987. Mejoramiento Genético Animal (in Spanish). Buenos Aires: Hemisferio Sur, 253
|
[6] |
De Oliveira C A L, Ribeiro R P, Yoshida G M, et al. 2016. Correlated changes in body shape after five generations of selection to improve growth rate in a breeding program for Nile tilapia Oreochromis niloticus in Brazil. Journal of Applied Genetics, 57(4): 487–493. doi: 10.1007/s13353-016-0338-5
|
[7] |
Gilmour A R, Gogel B J, Cullis B R, et al. 2009. ASReml User Guide Release 3.0. Hemel Hempstead, UK: VSN International Ltd
|
[8] |
Gjerde B, Schaeffer L R. 1989. Body traits in rainbow trout: II. Estimates of heritabilities and of phenotypic and genetic correlations. Aquaculture, 80(1–2): 25–44. doi: 10.1016/0044-8486(89)90271-8
|
[9] |
Guan C T. 2016. Annual Report 2015 of National Technology System for Flatfish Culture Industry (in Chinese). Qingdao: China Ocean University Press, 179–242
|
[10] |
Islam M S, Khan S, Khanam D, et al. 1993. Genetic variability and path analysis in cucumber (Cucumis sativus L.). Bangladesh Journal of Plant Breeding and Genetics, 6: 45–51
|
[11] |
Kause A, Ritola O, Paananen T, et al. 2003. Big and beautiful? Quantitative genetic parameters for appearance of large rainbow trout. Journal of Fish Biology, 62(3): 610–622. doi: 10.1046/j.1095-8649.2003.00051.x
|
[12] |
Kirkpatrick M, Heckman N. 1989. A quantitative genetic model for growth, shape, reaction norms, and other infinite-dimensional characters. Journal of Mathematical Biology, 27(4): 429–450. doi: 10.1007/BF00290638
|
[13] |
Kirkpatrick M, Lofsvold D, Bulmer M. 1990. Analysis of the inheritance, selection and evolution of growth trajectories. Genetics, 124(4): 979–993
|
[14] |
Kumar V, Singh D K, Panchbhaiya A, et al. 2017. Correlation and path coefficient analysis studies in midseason cauliflower (Brassica oleracea var. botrytis L.). Journal of Pharmacognosy and Phytochemistry, 6(4): 1130–1137
|
[15] |
Lei Jilin. 2010. Annual Report 2009 of National Technology System for Flatfish Culture Industry (in Chinese). Qingdao: China Ocean University Press, 75–120
|
[16] |
Lei Jilin. 2012. Annual Report 2011 of National Technology System for Flatfish Culture Industry (in Chinese). Qingdao: China Ocean University Press, 117–176
|
[17] |
Lei Jilin. 2013. AnnuaL Report 2012 of National Technology System for Flatfish Culture Industry (in Chinese). Qingdao: China Ocean University Press, 183–242
|
[18] |
Lei Jilin. 2014. Annual Report 2013 of National Technology System for Flatfish Culture Industry (in Chinese). Qingdao: China Ocean University Press, 187–246
|
[19] |
Lei Jilin. 2015. AnnuAl Report 2014 of National Technology System for Flatfish Culture Industry (in Chinese). Qingdao: China Ocean University Press, 199–266
|
[20] |
Liu Yongxin, Jiang Li, Liu Haijin, et al. 2014. Phenotypic and genetic parameter estimation of morphological traits related to axial body growth in Japanese flounder. Fisheries Science, 80(2): 317–321. doi: 10.1007/s12562-014-0704-3
|
[21] |
Liu Yongxin, Sun Zhaohui, Wang Yufen, et al. 2015. Genetic analysis for main length ratio associated with morphological traits in Japanese flounder Paralichthys olivaceus. Journal of Fish Biology, 86(3): 1129–1138. doi: 10.1111/jfb.12635
|
[22] |
Ma Aijun, Chen Chao, Lei Jilin, et al. 2006. Turbot Scophthalmus maximus: stocking density on growth, pigmentation and feed conversion. Chinese Journal of Oceanology and Limnology, 24(3): 307–312. doi: 10.1007/BF02842633
|
[23] |
National Technology Research and Development Center for Flounder Industry. 2011. AnnuaL Report 2010 of National Technology System for Flatfish Culture Industry (in Chinese). Qingdao: China Ocean University Press, 129–174
|
[24] |
Rana N P, Pandit M K. 2011. Studies on the genetic variability, character association and path analysis in snake gourd (Trichosanthes anguina L.) genotypes. Journal of Crop and Weed, 7(2): 91–96
|
[25] |
Ruan X H, Wang W J, Kong J, et al. 2011. Isolation and analysis of microsatellites in the genome of turbot (Scophthalmus maximus L.). African Journal of Biotechnology, 10(4): 507–518
|
[26] |
Saatci M, Dewi I A, Aksoy A R. 2003. Application of REML procedure to estimate the genetic parameters of weekly liveweights in one-to-one sire and dam pedigree recorded Japanese quail. Journal of Animal Breeding and Genetics, 120(1): 23–28. doi: 10.1046/j.1439-0388.2003.00370.x
|
[27] |
Said E M, Fatiha H. 2015. Genotypic variation in fruit characters in some genotypes of watermelon cultivated in Morocco. International Journal of Agronomy and Agricultural Research, 6(4): 130–137
|
[28] |
Schaeffer L R. 2004. Application of random regression models in animal breeding. Livestock Production Science, 86(1–3): 35–45. doi: 10.1016/S0301-6226(03)00151-9
|
[29] |
Shikano T. 2007. Quantitative genetic parameters for growth-related and morphometric traits of hatchery-produced Japanese flounder Paralichthys olivaceus in the wild. Aquaculture Research, 38(12): 1248–1253. doi: 10.1111/j.1365-2109.2007.01749.x
|
[30] |
Shimada Y, Shikano T, Murakami N, et al. 2007. Maternal and genetic effects on individual variation during early development in Japanese flounder Paralichthys olivaceus. Fisheries Science, 73(2): 244–249. doi: 10.1111/j.1444-2906.2007.01330.x
|
[31] |
Wang Xin’an, Ma Aijun. 2015. Comparison of the morphometric dynamics of fast-growing and slow-growing strains of turbot Scophthalmus maximus. Chinese Journal of Oceanology and Limnology, 33(4): 890–894. doi: 10.1007/s00343-015-4195-6
|
[32] |
Wang Xin’an, Ma Aijun. 2016. Comparison of four nonlinear growth models for effective exploration of growth characteristics of turbot Scophthalmus maximus fish strain. African Journal of Biotechnology, 15(40): 2251–2258. doi: 10.5897/AJB2016.15490
|
[33] |
Wang Xin’an, Ma Aijun, Huang Zhihui, et al. 2010. Heritability and genetic correlation of survival in turbot (Scophthalmus maximus). Chinese Journal of Oceanology and Limnology, 28(6): 1200–1205. doi: 10.1007/s00343-010-9014-5
|
[34] |
Wang Xin’an, Ma Aijun, Ma Deyou. 2015. Developmental quantitative genetic analysis of body weights and morphological traits in the turbot, Scophthalmus maximus. Acta Oceanologica Sinica, 34(2): 55–62. doi: 10.1007/s13131-015-0618-7
|
[35] |
Xu Liyong, Wang Weiji, Kong Jie, et al. 2015. Estimates of heritability and correlation for growth traits of Turbot (Scophthalmus maximus L.) under low temperature conditions. Acta Oceanologica Sinica, 34(2): 63–67. doi: 10.1007/s13131-015-0616-9
|
[36] |
Zhang Tianshi, Kong Jie, Liu Baosuo, et al. 2014. Genetic parameter estimation for juvenile growth and upper thermal tolerance in turbot (Scophthalmus maximus Linnaeus). Acta Oceanologica Sinica, 33(8): 106–110. doi: 10.1007/s13131-014-0460-3
|
1. | Qian Liu, Zhao Song, Huan Mei, et al. Nonlinear interactions of internal waves and the force of internal solitary waves on small - Diameter cylinders. Ocean Engineering, 2025, 326: 120840. doi:10.1016/j.oceaneng.2025.120840 | |
2. | Liming Fan, Hui Sun, Qingxuan Yang, et al. Numerical investigation of interaction between anticyclonic eddy and semidiurnal internal tide in the northeastern South China Sea. Ocean Science, 2024, 20(1): 241. doi:10.5194/os-20-241-2024 | |
3. | Zhaoyang Tian, Yonggang Jia, Junjiang Zhu, et al. Microseismic observations reveal that internal waves intensify seabed methane release. Science China Earth Sciences, 2024, 67(10): 3186. doi:10.1007/s11430-023-1351-2 | |
4. | 兆阳 田, 永刚 贾, 俊江 朱, et al. 微震观测揭示内波加剧海底甲烷释放. SCIENTIA SINICA Terrae, 2024, 54(10): 3237. doi:10.1360/SSTe-2023-0304 | |
5. | Qian Liu, Jian Cui, Huan Mei, et al. Study on the Load Characteristics of Submerged Body Under Internal Solitary Waves on the Continental Shelf and Slope. China Ocean Engineering, 2024, 38(5): 809. doi:10.1007/s13344-024-0063-5 | |
6. | Rongwei Zhai, Guiying Chen, Chenjing Shang, et al. The effect of Typhoon Kalmaegi on the modal energy and period of internal waves near the Dongsha Islands (South China Sea). Acta Oceanologica Sinica, 2023, 42(12): 22. doi:10.1007/s13131-023-2205-7 | |
7. | Wei Yang, Ruixiang Li, Yanqing Feng, et al. Cross-shelf variation of internal tides west of the Dongsha Plateau in the northern South China Sea. Acta Oceanologica Sinica, 2023, 42(10): 23. doi:10.1007/s13131-023-2251-1 | |
8. | Haonan Wang, Yonggang Jia, Chunsheng Ji, et al. Internal tide-induced turbulent mixing and suspended sediment transport at the bottom boundary layer of the South China Sea slope. Journal of Marine Systems, 2022, 230: 103723. doi:10.1016/j.jmarsys.2022.103723 | |
9. | Hui Wang, Cong Hu, Xuezhi Feng, et al. In-situ long-period monitoring of suspended particulate matter dynamics in deep sea with digital video images. Frontiers in Marine Science, 2022, 9 doi:10.3389/fmars.2022.1011029 | |
10. | Zhipeng Zhang, Hongzhou Xu, Philip A. Vetter, et al. High-Frequency Motions in the Southeastern South China Sea During Winter–Spring 2018/2019. Frontiers in Marine Science, 2021, 8 doi:10.3389/fmars.2021.681993 |