Volume 39 Issue 3
Apr.  2020
Turn off MathJax
Article Contents
Ya’nan Ding, Chunsheng Jing. Three-dimensional thermohaline anomaly structures of rings in the Kuroshio Extension region[J]. Acta Oceanologica Sinica, 2020, 39(3): 25-35. doi: 10.1007/s13131-020-1559-3
Citation: Ya’nan Ding, Chunsheng Jing. Three-dimensional thermohaline anomaly structures of rings in the Kuroshio Extension region[J]. Acta Oceanologica Sinica, 2020, 39(3): 25-35. doi: 10.1007/s13131-020-1559-3

Three-dimensional thermohaline anomaly structures of rings in the Kuroshio Extension region

doi: 10.1007/s13131-020-1559-3
Funds:  The National Key Research and Development Program of China under contract No. 2016YFC1402607; Scientific Research Foundation of Third Institude of Oceanography, Ministry of Nature Resources under contract Nos 2017012 and 2018001; Global Change and Air-Sea Interaction Program under contract Nos GASI-IPOVAI-02 and GASI-IPOVAI-03.
More Information
  • Corresponding author: E-mail: jingcs@tio.org.cn
  • Received Date: 2019-03-23
  • Accepted Date: 2019-05-13
  • Available Online: 2020-04-21
  • Publish Date: 2020-03-25
  • Using AVISO satellite altimeter observations during 1993–2015 and a manual eddy detection method, a total of 276 anticyclonic rings and 242 cyclonic rings shed from the Kuroshio Extension (KE) were identified, and their three-dimensional (3D) anomaly structures were further reconstructd based on the Argo float data and the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) cruise and buoy data through an interpolation method. It is found that the cyclonic (anticyclonic) rings presented consistent negative (positive) anomalies of potential temperature; meanwhile the relevant maximum anomaly center became increasingly shallow for the cyclonic rings whereas it went deeper for the anticyclonic rings as the potential temperature anomaly decreased from the west to the east. The above deepening or shoaling trend is associated with the zonal change of the depth of the main thermocline. Moreover, the composite cold ring between 140° and 150°E was found to exhibit a double-core vertical structure due to the existence of mode water with low potential vorticity. Specifically, a relatively large negative (positive) salinity anomaly and a small positive (negative) one appeared for the composite cyclonic (anticyclonic) ring at the depth above and below 600 m, respectively. The underlying driving force for the temperature and salinity anomaly of the composite rings was also attempted, which varies depending on the intensity of the background current and the temperature and salinity fields in different areas of the KE region, and the rings’ influences on the temperature and salinity could reach deeper than 1 000 m on average.
  • loading
  • [1]
    Akima H. 1970. A new method of interpolation and smooth curve fitting based on local procedures. Journal of the ACM, 17(4): 589–602. doi: 10.1145/321607.321609
    [2]
    Barth A, Beckers J M, Troupin C, et al. 2014. Divand-1.0: n-dimensional variational data analysis for ocean observations. Geoscientific Model Development, 7(1): 225–241. doi: 10.5194/gmd-7-225-2014
    [3]
    Chaigneau A, Gizolme A, Grados C. 2008. Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns. Progress in Oceanography, 79(2–4): 106–119. doi: 10.1016/j.pocean.2008.10.013
    [4]
    Chaigneau A, Le Texier M, Eldin G, et al. 2011. Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: A composite analysis from altimetry and Argo profiling floats. Journal of Geophysical Research: Oceans, 116(C11): C11025. doi: 10.1029/2011JC007134
    [5]
    Chelton D B, Schlax M G, Samelson R M, et al. 2007. Global observations of large oceanic eddies. Geophysical Research Letters, 34(15): L15606. doi: 10.1029/2007GL030812
    [6]
    Chelton D B, Schlax M G, Samelson R M. 2011. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2): 167–216. doi: 10.1016/j.pocean.2011.01.002
    [7]
    Chen Gengxin, Gan Jianping, Xie Qiang, et al. 2012. Eddy heat and salt transports in the South China Sea and their seasonal modulations. Journal of Geophysical Research: Oceans, 117(C5): C05021. doi: 10.1029/2011JC007724
    [8]
    Cushman-Roisin B. 1993. Trajectories in Gulf Stream meander. Journal of Geophysical Research: Oceans, 98(C2): 2543–2554. doi: 10.1029/92JC02059
    [9]
    Ding Ya’nan, Jing Chunsheng, Qiu Yun. 2019. Temporal and spatial characteristics of pinch-off rings in the Kuroshio Extension region. Haiyang Xuebao (in Chinese), 41(5): 47–58. doi: 10.3969/j.issn.0253-4193.2019.05.005
    [10]
    Dong Di, Brandt P, Chang Ping, et al. 2017. Mesoscale eddies in the Northwestern Pacific Ocean: three-dimensional eddy structures and heat/salt transports. Journal of Geophysical Research: Oceans, 122(12): 9795–9813. doi: 10.1002/2017JC013303
    [11]
    Faghmous J H, Frenger I, Yao Yuanshun, et al. 2015. A daily global mesoscale ocean eddy dataset from satellite altimetry. Scientific Data, 2: 150028. doi: 10.1038/sdata.2015.28
    [12]
    Itoh S, Yasuda I. 2010. Characteristics of mesoscale eddies in the Kuroshio-Oyashio Extension Region detected from the distribution of the sea surface height anomaly. Journal of Physical Oceanography, 40(5): 1018–1034. doi: 10.1175/2009JPO4265.1
    [13]
    Japan Agency for Marine-Earth Science and Technology. 2016. Data and Sample Research System for Whole Cruise Information in JAMSTEC (DARWIN). http://www.godac.jamstec.go.jp/darwin/ [2018-09-17]
    [14]
    Jochumsen K, Rhein M, Hüttl‐Kabus S, et al. 2010. On the propagation and decay of North Brazil Current rings. Journal of Geophysical Research: Oceans, 115(C10): C10004. doi: 10.1029/2009JC006042
    [15]
    Kouketsu S, Tomita H, Oka E, et al. 2012. The role of meso-scale eddies in mixed layer deepening and mode water formation in the western North Pacific. Journal of Oceanography, 68(1): 63–77. doi: 10.1007/s10872-011-0049-9
    [16]
    Martin A P, Richards K J. 2001. Mechanisms for vertical nutrient transport within a North Atlantic mesoscale eddy. Deep-Sea Research, Part II: Topical Studies in Oceanography, 48(4–5): 757–773. doi: 10.1016/S0967-0645(00)00096-5
    [17]
    Masuzawa J. 1969. Subtropical mode water. Deep Sea Research and Oceanographic Abstracts, 16(5): 463–472. doi: 10.1016/0011-7471(69)90034-5
    [18]
    McGillicuddy D J Jr, Anderson L A, Bates N R, et al. 2007. Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. Science, 316(5872): 1021–1026. doi: 10.1126/science.1136256
    [19]
    Mcwilliams J C, Flierl G R. 1979. On the evolution of isolated, nonlinear vortices. Journal of Physical Oceanography, 9(9): 1155–1182
    [20]
    Olson D B. 1991. Rings in the ocean. Annual Review of Earth and Planetary Sciences, 19(1): 283–311. doi: 10.1146/annurev.ea.19.050191.001435
    [21]
    Qiu Bo. 2000. Interannual variability of the Kuroshio Extension system and its impact on the wintertime SST field. Journal of Physical Oceanography, 30(6): 1486–1502. doi: 10.1175/1520-0485(2000)030<1486:IVOTKE>2.0.CO;2
    [22]
    Qiu Bo. 2003. Kuroshio extension variability and forcing of the pacific decadal oscillations: responses and potential feedback. Journal of Physical Oceanography, 33(12): 2465–2482. doi: 10.1175/2459.1
    [23]
    Qiu Bo, Chen Shuiming. 2005. Eddy-induced heat transport in the subtropical North Pacific from Argo, TMI, and altimetry measurements. Journal of Physical Oceanography, 35(4): 458–473. doi: 10.1175/JPO2696.1
    [24]
    Qiu Bo, Chen Shuiming. 2010a. Interannual variability of the North Pacific Subtropical Countercurrent and its associated mesoscale eddy field. Journal of Physical Oceanography, 40(1): 213–225. doi: 10.1175/2009JPO4285.1
    [25]
    Qiu Bo, Chen Shuiming. 2010b. Eddy-mean flow interaction in the decadally modulating Kuroshio Extension system. Deep Sea Research Part II: Topical Studies in Oceanography, 57(13–14): 1098–1110. doi: 10.1016/j.dsr2.2008.11.036
    [26]
    Roemmich D, Gilson J. 2001. Eddy transport of heat and thermocline waters in the north pacific: a key to interannual/decadal climate variability. Journal of Physical Oceanography, 13(3): 675–688. doi: 10.1175/1520-0485(2001)031<0675:ETOHAT>2.0.CO;2
    [27]
    Rudnick D L, Jan S, Centurioni L, et al. 2011. Seasonal and mesoscale variability of the Kuroshio near its origin. Oceanography, 24(4): 52–63. doi: 10.5670/oceanog.2011.94
    [28]
    Sasaki Y N, Minobe S. 2015. Climatological mean features and interannual to decadal variability of ring formations in the Kuroshio Extension region. Journal of Oceanography, 71(5): 499–509. doi: 10.1007/s10872-014-0270-4
    [29]
    Souza J M A C, De Boyer Montégut C, Cabanes C, et al. 2015. Estimation of the Agulhas ring impacts on meridional heat fluxes and transport using ARGO floats and satellite data. Geophysical Research Letters, 38(21): L21602
    [30]
    Suga T, Hanawa K, Toba Y. 2010. Subtropical mode water in the 137°E section. Journal of Physical Oceanography, 19(10): 1605–1619
    [31]
    Suga T, Kato A, Hanawa K. 2000. North Pacific Tropical Water: its climatology and temporal changes associated with the climate regime shift in the 1970s. Progress in Oceanography, 47(2–4): 223–256. doi: 10.1016/S0079-6611(00)00037-9
    [32]
    Talley L D. 1993. Distribution and formation of North Pacific Intermediate Water. Journal of Physical Oceanography, 23(3): 517–537. doi: 10.1175/1520-0485(1993)023<0517:DAFONP>2.0.CO;2
    [33]
    Waterman S, Hoskins B J. 2013. Eddy Shape, orientation, propagation, and mean flow feedback in Western Boundary Current jets. Journal of Physical Oceanography, 43(8): 1666–1690. doi: 10.1175/JPO-D-12-0152.1
    [34]
    Yang Guang. 2013. A study on the mesoscale eddies in the Northwestern Pacific Ocean (in Chinese) [dissertation]. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences
    [35]
    Yang Guang, Wang Fan, Li Yuanlong, et al. 2013. Mesoscale eddies in the northwestern subtropical Pacific Ocean: Statistical characteristics and three-dimensional structures. Journal of Geophysical Research: Oceans, 118(4): 1906–1925. doi: 10.1002/jgrc.20164
    [36]
    Zhang Ronghua, Rothstein L M, Busalacchi A J. 1998. Origin of upper-ocean warming and El Nino change on decadal scales in the tropical Pacific Ocean. Nature, 39(6670): 879–883
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (515) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return