Citation: | Zenghong Liu, Jianping Xu, Jiancheng Yu. Real-time quality control of data from Sea-Wing underwater glider installed with Glider Payload CTD sensor[J]. Acta Oceanologica Sinica, 2020, 39(3): 130-140. doi: 10.1007/s13131-020-1564-6 |
[1] |
Baird M E, Suthers I M, Griffin D A, et al. 2011. The effect of surface flooding on the physical-biogeochemical dynamics of a warm-core eddy off southeast Australia. Deep Sea Research Part II: Topical Studies in Oceanography, 58(5): 592–605. doi: 10.1016/j.dsr2.2010.10.002
|
[2] |
Baltes B, Rudnick D, Crowley M, et al. 2014. Toward a U.S. IOOS® Underwater glider network plan: part of a comprehensive subsurface observing system. Technical Report U S IOOS
|
[3] |
Böhme L, Send U. 2005. Objective analyses of hydrographic data for referencing profiling float salinities in highly variable environments. Deep Sea Research Part II: Topical Studies in Oceanography, 52(3–4): 651–664. doi: 10.1016/j.dsr2.2004.12.014
|
[4] |
Bouffard J, Pascual A, Ruiz S, et al. 2010. Coastal and mesoscale dynamics characterization using altimetry and gliders: a case study in the Balearic sea. Journal of Geophysical Research: Oceans, 115(C10): C10029. doi: 10.1029/2009JC006087
|
[5] |
Bouffard J, Renault L, Ruiz S, et al. 2012. Sub-surface small-scale eddy dynamics from multi-sensor observations and modeling. Progress in Oceanography, 106: 62–79. doi: 10.1016/j.pocean.2012.06.007
|
[6] |
Dobricic S, Pinardi N, Testor P, et al. 2010. Impact of data assimilation of glider observations in the Ionian Sea (Eastern Mediterranean). Dynamics of Atmospheres and Oceans, 50(1): 78–92. doi: 10.1016/j.dynatmoce.2010.01.001
|
[7] |
Dong J L, Domingues R, Goni G, et al. 2017. Impact of assimilating underwater glider data on Hurricane Gonzalo (2014) forecasts. Weather and Forecasting, 32(3): 1143–1159. doi: 10.1175/WAF-D-16-0182.1
|
[8] |
Gangopadhyay A, Schmidt A, Agel L, et al. 2013. Multiscale forecasting in the western North Atlantic: Sensitivity of model forecast skill to glider data assimilation. Continental Shelf Research, 63 Suppl: S159–S176
|
[9] |
Garau B, Ruiz S, Zhang W G, et al. 2011. Thermal lag correction on Slocum CTD glider data. Journal of Atmospheric and Oceanic Technology, 28(9): 1065–1071. doi: 10.1175/JTECH-D-10-05030.1
|
[10] |
Garcia H E, Boyer T, Baranova O K, et al. 2019. World Ocean Atlas 2018: Product Documentation. Silver Spring, Maryland: National Centers for Environmental Information, USA
|
[11] |
Liu Z H, Chen X R, Yu J C, et al. 2019. Kuroshio intrusion into the South China Sea with an anticyclonic eddy: Evidence from underwater glider observation. Journal of Oceanology and Limnology, doi: 10.1007/s00343-019-8290-y
|
[12] |
Liu F, Wang Y H, Wu Z L, et al. 2017. Motion analysis and trials of the deep sea hybrid underwater glider Petrel-II. China Ocean Engineering, 31(1): 55–62. doi: 10.1007/s13344-017-0007-4
|
[13] |
Liu Y G, Weisberg R H, Lembke C. 2015. Glider salinity correction for unpumped CTD sensors across a sharp thermocline. In: Liu Y G, Kerkering H, Weisberg R H, eds. Coastal Ocean Observing Systems. Amsterdam: Elsevier, 305−325
|
[14] |
Liu Z H, Xu J P, Sun C H. 2007. Discussing on detecting and calibration method of Argo conductivity sensor drift errors. Ocean Technology (in Chinese), 26(4): 72–76
|
[15] |
Lueck R G, Picklo J J. 1990. Thermal inertia of conductivity cells: observations with a sea-bird cell. Journal of Atmospheric and Oceanic Technology, 7(5): 756–768. doi: 10.1175/1520-0426(1990)007<0756:TIOCCO>2.0.CO;2
|
[16] |
Miles T, Seroka G, Kohut J, et al. 2015. Glider observations and modeling of sediment transport in Hurricane Sandy. Journal of Geophysical Research: Oceans, 120(3): 1771–1791. doi: 10.1002/2014JC010474
|
[17] |
Morison J, Andersen R, Larson N, et al. 1994. The correction for thermal-lag effects in sea-bird CTD data. Journal of Atmospheric and Oceanic Technology, 11(4): 1151–1164. doi: 10.1175/1520-0426(1994)011<1151:TCFTLE>2.0.CO;2
|
[18] |
Oka E, Ando K. 2004. Stability of temperature and conductivity sensors of Argo profiling floats. Journal of Oceanography, 60(2): 253–258. doi: 10.1023/B:JOCE.0000038331.10108.79
|
[19] |
Owens W B, Wong A P S. 2009. An improved calibration method for the drift of the conductivity sensor on autonomous CTD profiling floats by θ-S climatology. Deep Sea Research Part I: Oceanographic Research Papers, 56(3): 450–457. doi: 10.1016/j.dsr.2008.09.008
|
[20] |
Pan C D, Yaremchuk M, Nechaev D, et al. 2011. Variational assimilation of glider data in Monterey Bay. Journal of Marine Research, 69(2–3): 331–346
|
[21] |
Pan C D, Zheng L Y, Weisberg R H, et al. 2014. Comparisons of different ensemble schemes for glider data assimilation on West Florida shelf. Ocean Modelling, 81: 13–24. doi: 10.1016/j.ocemod.2014.06.005
|
[22] |
Racape V, Dobler D, Coatanoan C. 2018. Tests RTQC. In: Proceedings of the 19th Meeting of the Argo Data Management Team. San Diego: The 19th Meeting of the Argo Data Managemen Team
|
[23] |
Rudnick D L, Davis R E, Eriksen C C, et al. 2004. Underwater gliders for ocean research. Marine Technology Society Journal, 38(2): 73–84. doi: 10.4031/002533204787522703
|
[24] |
Ruiz S, Pascual A, Garau B, et al. 2009. Mesoscale dynamics of the Balearic Front, integrating glider, ship and satellite data. Journal of Marine Systems, 78 (Suppl): S3–S16
|
[25] |
Shu Y Q, Wang Q, Zu T T. 2018. Progress on shelf and slope circulation in the northern South China Sea. Science China Earth Sciences, 61(5): 560–571. doi: 10.1007/s11430-017-9152-y
|
[26] |
Shu Y Q, Xiu P, Xue H J, et al. 2016. Glider-observed anticyclonic eddy in northern South China Sea. Aquatic Ecosystem Health & Management, 19(3): 233–241
|
[27] |
Shulman I, Rowley C, Anderson S, et al. 2009. Impact of glider data assimilation on the Monterey Bay model. Deep Sea Research Part II: Topical Studies in Oceanography, 56(3–5): 188–198. doi: 10.1016/j.dsr2.2008.08.003
|
[28] |
Stommel H. 1989. The SLOCUM mission. Oceanography, 19(1): 22–25
|
[29] |
Tintoré J, Vizoso G, Casas B, et al. 2013. SOCIB: The Balearic Islands Coastal Ocean Observing and Forecasting System Responding to Science, Technology and Society Needs. Marine Technology Society Journal, 47(1): 101–117. doi: 10.4031/MTSJ.47.1.10
|
[30] |
Troupin C, Beltran J P, Heslop E, et al. 2015. A toolbox for glider data processing and management. Methods in Oceanography, 13–14: 13–23. doi: 10.1016/j.mio.2016.01.001
|
[31] |
UNESCO. 1981. Tenth report of the joint panel on oceanographic tables and standards. UNESCO technical papers in Marine Sciences, No. 36
|
[32] |
U S. Integrated Ocean Observing System. 2016. Manual for quality control of temperature and salinity data observations from gliders Version 1.0. https://cdn.ioos.noaa.gov/media/2017/12/Manual-for-QC-of-Glider-Data_05_09_16.pdf [2017-12-1/2018-8-16]
|
[33] |
Wong A P S, Johnson G C, Owens W B. 2003. Delayed-mode calibration of autonomous CTD profiling float salinity data by θ-S climatology. Journal of Atmospheric and Oceanic Technology, 20(2): 308–318. doi: 10.1175/1520-0426(2003)020<0308:DMCOAC>2.0.CO;2
|
[34] |
Wong A, Keeley R, Carval T, et al. 2019. Argo quality control manual for CTD and trajectory data. http://dx.doi.org/10.13155/33951 [2018-1-16/2018-8-14]
|
[35] |
Yu J C, Zhang A Q, Jin W M, et al. 2011. Development and experiments of the sea-wing underwater glider. China Ocean Engineering, 25(4): 721–736. doi: 10.1007/s13344-011-0058-x
|