Volume 39 Issue 7
Jul.  2020
Turn off MathJax
Article Contents
Yongliang Duan, Hongwei Liu, Lin Liu, Weidong Yu. Intraseasonal modulation of Wyrtki jet in the eastern Indian Ocean by equatorial waves during spring 2013[J]. Acta Oceanologica Sinica, 2020, 39(7): 11-18. doi: 10.1007/s13131-020-1576-2
Citation: Yongliang Duan, Hongwei Liu, Lin Liu, Weidong Yu. Intraseasonal modulation of Wyrtki jet in the eastern Indian Ocean by equatorial waves during spring 2013[J]. Acta Oceanologica Sinica, 2020, 39(7): 11-18. doi: 10.1007/s13131-020-1576-2

Intraseasonal modulation of Wyrtki jet in the eastern Indian Ocean by equatorial waves during spring 2013

doi: 10.1007/s13131-020-1576-2
Funds:  The Basic Scientific Fund for National Public Research Institutes of China under contract Nos 2019Q03 and 2017S02; the National Natural Science Foundation of China under contract Nos 41706032, 41406012, 4187060841, 41876028 and 41676020; Taishan Scholars Programs of Shandong Province under contract No. tsqn201909165; the National Program on Global Change and Air-Sea Interaction under contract Nos GASI-IPOVAI-03, GASI-IPOVAI-02, GASI-02-IND-STSaut and GASI-02-IND-STSwin; the NSFC-Shandong Joint Fund for Marine Science Research Centers under contract No. U1606405; the Ao-Shan Talents Cultivation Program supported by Pilot National Laboratory for Marine Science and Technology (Qingdao) under contract No. 2017ASTCP-OS01.
More Information
  • Corresponding author: E-mail: liul@fio.org.cn
  • Received Date: 2020-01-08
  • Accepted Date: 2020-02-04
  • Available Online: 2020-12-28
  • Publish Date: 2020-07-25
  • A strong spring Wyrtki jet (WJ) presents in May 2013 in the eastern equatorial Indian Ocean. The entire buildup and retreat processes of the spring WJ were well captured by two adjacent Acoustic Doppler Current Profilers mounted on the mooring systems. The observed zonal jet behaved as one intraseasonal event with the significant features of abrupt emergence as well as slow disappearance. Further research illustrate that the pronounced surface westerly wind burst during late-April to mid-May, associated with the active phase of a robust eastward-propagating Madden–Julian oscillation in the tropical Indian Ocean, was the dominant reason for the rapid acceleration of surface WJ. In contrasting, the governing mechanism for the jet termination was equatorial wave dynamics rather than wind forcing. The decomposition analysis of equatorial waves and the corresponding changes in the ocean thermocline demonstrated that strong WJ was produced rapidly by the wind-generated oceanic downwelling equatorial Kelvin wave and was terminated subsequently by the westward-propagating equatorial Rossby wave reflecting from eastern boundaries of the Indian Ocean.
  • loading
  • [1]
    Atlas R, Hoffman R N, Ardizzone J, et al. 2011. A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bulletin of the American Meteorological Society, 92(2): 157–174. doi: 10.1175/2010BAMS2946.1
    [2]
    Bonjean F, Lagerloef G S E. 2002. Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. Journal of Physical Oceanography, 32(10): 2938–2954. doi: 10.1175/1520-0485(2002)032<2938:DMAAOT>2.0.CO;2
    [3]
    Boulanger J P, Menkes C. 1995. Propagation and reflection of long equatorial waves in the Pacific Ocean during the 1992-1993 El Niño. Journal of Geophysical Research, 100(C12): 25041–25059. doi: 10.1029/95JC02956
    [4]
    Cane M A. 1980. On the dynamics of equatorial currents, with application to the Indian Ocean. Deep Sea Research Part A. Oceanographic Research Papers, 27(7): 525–544. doi: 10.1016/0198-0149(80)90038-2
    [5]
    Chen Gengxin, Han Weiqing, Li Yuanlong, et al. 2015a. Seasonal-to-interannual time-scale dynamics of the equatorial undercurrent in the Indian Ocean. Journal of Physical Oceanography, 45(6): 1532–1553. doi: 10.1175/JPO-D-14-0225.1
    [6]
    Chen Gengxin, Han Weiqing, Li Yuanlong, et al. 2015b. Intraseasonal variability of upwelling in the equatorial eastern Indian Ocean. Journal of Geophysical Research, 120(11): 7598–7615
    [7]
    Chen Gengxin, Han Weiqing, Li Yuanlong, et al. 2017. Strong intraseasonal variability of meridional currents near 5°N in the eastern Indian Ocean: characteristics and causes. Journal of Physical Oceanography, 47(5): 979–998. doi: 10.1175/JPO-D-16-0250.1
    [8]
    Chen Gengxin, Han Weiqing, Li Yuanlong, et al. 2019. Intraseasonal variability of the Equatorial Undercurrent in the Indian Ocean. Journal of Physical Oceanography, 49(1): 85–101. doi: 10.1175/JPO-D-18-0151.1
    [9]
    Chu P C. 2010. Observational studies on association between eastward equatorial jet and Indian Ocean dipole. Journal of Oceanography, 66(3): 429–434. doi: 10.1007/s10872-010-0037-5
    [10]
    Duan Yongliang, Liu Lin, Han Guoqing, et al. 2016. Anomalous behaviors of Wyrtki jets in the equatorial Indian Ocean during 2013. Scientific Reports, 6(1): 29688. doi: 10.1038/srep29688
    [11]
    Ducet N, Le Traon P Y, Reverdin G. 2000. Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. Journal of Geophysical Research, 105(C8): 19477–19498. doi: 10.1029/2000JC900063
    [12]
    Gnanaseelan C, Deshpande A, McPhaden M J. 2012. Impact of Indian Ocean Dipole and El Niño/Southern Oscillation wind-forcing on the Wyrtki jets. Journal of Geophysical Research, 117: C08005
    [13]
    Grodsky S A, Carton J A, Murtugudde R. 2001. Anomalous surface currents in the tropical Indian Ocean. Geophysical Research Letters, 28(22): 4207–4210. doi: 10.1029/2001GL013592
    [14]
    Han Weiqing, Lawrence D M, Webster P J. 2001. Dynamical response of equatorial Indian Ocean to intraseasonal winds: Zonal flow. Geophysical Research Letters, 28(22): 4215–4218. doi: 10.1029/2001GL013701
    [15]
    Han Weiqing, McCreary J P, Anderson D L T, et al. 1999. Dynamics of the eastern surface jets in the equatorial Indian Ocean. Journal of Physical Oceanography, 29(9): 2191–2209. doi: 10.1175/1520-0485(1999)029<2191:DOTESJ>2.0.CO;2
    [16]
    Han Weiqing, McCreary J P, Masumoto Y, et al. 2011. Basin resonances in the equatorial Indian Ocean. Journal of Physical Oceanography, 41(6): 1252–1270. doi: 10.1175/2011JPO4591.1
    [17]
    Han Weiqing, Webster P, Lukas R, et al. 2004. Impact of atmospheric intraseasonal variability in the Indian Ocean: Low-frequency rectification in equatorial surface current and transport. Journal of Physical Oceanography, 34(6): 1350–1372. doi: 10.1175/1520-0485(2004)034<1350:IOAIVI>2.0.CO;2
    [18]
    Huang Ke, McPhaden M J, Wang Dongxiao, et al. 2018a. Vertical propagation of middepth zonal currents associated with surface wind forcing in the equatorial Indian Ocean. Journal of Geophysical Research, 123(10): 7290–7307
    [19]
    Huang Ke, Wang Dongxiao, Wang Weiqiang, et al. 2018b. Multi-scale variability of the tropical Indian Ocean circulation system revealed by recent observations. Science China Earth Sciences, 61(6): 668–680. doi: 10.1007/s11430-017-9179-x
    [20]
    Iskandar I, McPhaden M J. 2011. Dynamics of wind-forced intraseasonal zonal current variations in the equatorial Indian Ocean. Journal of Geophysical Research, 116(C6): C06019
    [21]
    Iskandar I, Setiabudidaya D, Mardiansyah W, et al. 2016. Simulated interannual modulation of intraseasonal Kelvin waves in the equatorial Indian Ocean. Journal of Mathematical and Fundamental Sciences, 48(3): 213–229. doi: 10.5614/j.math.fund.sci.2016.48.3.3
    [22]
    Jensen T G. 1993. Equatorial variability and resonance in a wind-driven Indian Ocean model. Journal of Geophysical Research, 98(C12): 22533–22552. doi: 10.1029/93JC02565
    [23]
    Jensen T G, Shinoda T, Chen S, et al. 2015. Ocean Response to CINDY/DYNAMO MJOs in Air-Sea-Coupled COAMPS. Journal of the Meteorological Society of Japan, 93: 157–178
    [24]
    Joseph S, Wallcraft A J, Jensen T G, et al. 2012. Weakening of spring Wyrtki jets in the Indian Ocean during 2006–2011. Journal of Geophysical Research, 117: C04012
    [25]
    Le Blanc J L, Boulanger J P. 2001. Propagation and reflection of long equatorial waves in the Indian Ocean from TOPEX/Poseidon data during the 1993–1998 period. Climate Dynamics, 17(7): 547–557. doi: 10.1007/s003820000128
    [26]
    Liu Lin, Liu Baochao, Han Guoqing, et al. 2016. Assessment of the seasonal variation of simulated Wyrtki jet over the tropical Indian Ocean in CMIP5 models. Arabian Journal of Geosciences, 9: 676. doi: 10.1007/s12517-016-2704-3
    [27]
    Luyten J R, Roemmich D H. 1982. Equatorial currents at semi-annual period in the Indian Ocean. Journal of Physical Oceanography, 12(5): 406–413. doi: 10.1175/1520-0485(1982)012<0406:ECASAP>2.0.CO;2
    [28]
    Madden R A, Julian P R. 1971. Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. Journal of the Atmospheric Sciences, 28(5): 702–708. doi: 10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2
    [29]
    Madden R A, Julian P R. 1972. Description of global-scale circulation cells in the tropics with a 40–50 day period. Journal of the Atmospheric Sciences, 29(6): 1109–1123. doi: 10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2
    [30]
    Manghnani V, Subrahmanyam B, Xie Lian, et al. 2003. Numerical simulation of seasonal and interannual Indian Ocean upper layer circulation using Miami Isopycnic Coordinate Ocean Model. Journal of Geophysical Research, 108(C7): 3240. doi: 10.1029/2002JC001567
    [31]
    Masson S, Menkes C, Delecluse P, et al. 2003. Impacts of salinity on the eastern Indian Ocean during the termination of the fall Wyrtki Jet. Journal of Geophysical Research, 108(C3): 3067. doi: 10.1029/2001JC000833
    [32]
    Masumoto Y, Hase H, Kuroda Y, et al. 2005. Intraseasonal variability in the upper layer currents observed in the eastern equatorial Indian Ocean. Geophysical Research Letters, 32: L02607
    [33]
    McPhaden M J. 1982. Variability in the central equatorial Indian Ocean. Part I: Ocean dynamics. Journal of Marine Research, 40: 157–176
    [34]
    McPhaden M J, Foltz G R. 2013. Intraseasonal variations in the surface layer heat balance of the central equatorial Indian Ocean: The importance of zonal advection and vertical mixing. Geophysical Research Letters, 40(11): 2737–2741. doi: 10.1002/grl.50536
    [35]
    McPhaden M J, Meyers G, Ando K, et al. 2009. RAMA: The research moored array for African-Asian-Australian monsoon analysis and prediction. Bulletin of the American Meteorological Society, 90(4): 459–480. doi: 10.1175/2008BAMS2608.1
    [36]
    McPhaden M J, Wang Yi, Ravichandran M. 2015. Volume transports of the Wyrtki jets and their relationship to the Indian Ocean dipole. Journal of Geophysical Research, 120(8): 5302–5317
    [37]
    Molinari R L, Olson D, Reverdin G. 1990. Surface current distributions in the tropical Indian Ocean derived from compilations of surface buoy trajectories. Journal of Geophysical Research, 95(C5): 7217–7238. doi: 10.1029/JC095iC05p07217
    [38]
    Moum J N, De Szoeke S P, Smyth W D, et al. 2014. Air-sea interactions from westerly wind bursts during the November 2011 MJO in the Indian Ocean. Bulletin of the American Meteorological Society, 95(8): 1185–1199. doi: 10.1175/BAMS-D-12-00225.1
    [39]
    Moum J N, Pujiana K, Lien R C, et al. 2016. Ocean feedback to pulses of the Madden-Julian oscillation in the equatorial Indian Ocean. Nature Communications, 7(1): 13203. doi: 10.1038/ncomms13203
    [40]
    Nagura M, McPhaden M J. 2008. The dynamics of zonal current variations in the central equatorial Indian Ocean. Geophysical Research Letters, 35(23): L23603. doi: 10.1029/2008GL035961
    [41]
    Nagura M, McPhaden M J. 2010a. Wyrtki Jet dynamics: Seasonal variability. Journal of Geophysical Research, 115(C7): C07009
    [42]
    Nagura M, McPhaden M J. 2010b. Dynamics of zonal current variations associated with the Indian Ocean Dipole. Journal of Geophysical Research, 115(C11): C11026. doi: 10.1029/2010JC006423
    [43]
    Nagura M, McPhaden M J. 2012. The dynamics of wind-driven intraseasonal variability in the equatorial Indian Ocean. Journal of Geophysical Research, 117(C2): C02001
    [44]
    Nagura M, McPhaden M J. 2016. Zonal propagation of near-surface zonal currents in relation to surface wind forcing in the equatorial Indian Ocean. Journal of Physical Oceanography, 46(12): 3623–3638. doi: 10.1175/JPO-D-16-0157.1
    [45]
    Nyadjro E S, McPhaden M J. 2014. Variability of zonal currents in the eastern equatorial Indian Ocean on seasonal to interannual time scales. Journal of Geophysical Research, 119(11): 7969–7986
    [46]
    O’Brien J J, Hurlburt H E. 1974. Equatorial jet in the Indian Ocean: theory. Science, 184(4141): 1075–1077. doi: 10.1126/science.184.4141.1075
    [47]
    Pujiana K, McPhaden M J. 2018. Ocean surface layer response to convectively coupled kelvin waves in the eastern Equatorial Indian Ocean. Journal of Geophysical Research, 123(8): 5727–5741
    [48]
    Pujiana K, Moum J N, Smyth W D. 2018. The role of turbulence in redistributing upper-ocean heat, freshwater, and momentum in response to the MJO in the equatorial Indian Ocean. Journal of Physical Oceanography, 48(1): 197–220. doi: 10.1175/JPO-D-17-0146.1
    [49]
    Qiu Yun, Li Li, Yu Weidong. 2009. Behavior of the Wyrtki Jet observed with surface drifting buoys and satellite altimeter. Geophysical Research Letters, 36(18): L18607. doi: 10.1029/2009GL039120
    [50]
    Rao R R, Horii T, Masumoto Y, et al. 2016. Observed variability in the upper layers at the Equator, 90°E in the Indian Ocean during 2001–2008, 1: zonal currents. Climate Dynamics, 49(3): 1077–1105
    [51]
    Reppin J, Schott F A, Fischer J, et al. 1999. Equatorial currents and transports in the upper central Indian Ocean: Annual cycle and interannual variability. Journal of Geophysical Research, 104(C7): 15495–15514. doi: 10.1029/1999JC900093
    [52]
    Reverdin G. 1987. The upper equatorial Indian Ocean. The climatological seasonal cycle. Journal of Physical Oceanography, 17(7): 903–927. doi: 10.1175/1520-0485(1987)017<0903:TUEIOT>2.0.CO;2
    [53]
    Reverdin G, Cane M A. 1984. The near surface equatorial Indian Ocean in 1979. Part I: linear dynamics. Journal of Physical Oceanography, 14(12): 1817–1828
    [54]
    Sachidanandan C, Lengaigne M, Muraleedharan P M, et al. 2017. Interannual variability of zonal currents in the equatorial Indian Ocean: respective control of IOD and ENSO. Ocean Dynamics, 67(7): 857–873. doi: 10.1007/s10236-017-1061-4
    [55]
    Schiller A, Godfrey J S. 2003. Indian Ocean intraseasonal variability in an ocean general circulation model. Journal of Climate, 16(1): 21–39. doi: 10.1175/1520-0442(2003)016<0021:IOIVIA>2.0.CO;2
    [56]
    Schott F A, McCreary J P. 2001. The monsoon circulation of the Indian Ocean. Progress in Oceanography, 51(1): 1–123. doi: 10.1016/S0079-6611(01)00083-0
    [57]
    Schott F A, Xie Shangping, McCreary J P Jr. 2009. Indian Ocean circulation and climate variability. Reviews of Geophysics, 47(1): RG1002
    [58]
    Senan R, Sengupta D, Goswami B N. 2003. Intraseasonal “monsoon jets” in the equatorial Indian Ocean. Geophysical Research Letters, 30(14): 1750
    [59]
    Sengupta D, Goswami B N, Senan R. 2001. Coherent intraseasonal oscillations of ocean and atmosphere during the Asian Summer Monsoon. Geophysical Research Letters, 28(21): 4127–4130. doi: 10.1029/2001GL013587
    [60]
    Sengupta D, Senan R, Goswami B N, et al. 2007. Intraseasonal variability of equatorial Indian Ocean zonal currents. Journal of Climate, 20(13): 3036–3055. doi: 10.1175/JCLI4166.1
    [61]
    Shinoda T, Han Weiqing, Zamudio L, et al. 2017. Remote ocean response to the Madden-Julian Oscillation during the DYNAMO field campaign: Impact on Somali current system and the Seychelles-Chagos thermocline ridge. Atmosphere, 8(12): 171. doi: 10.3390/atmos8090171
    [62]
    Shinoda T, Jensen T G, Flatau M, et al. 2013a. Surface wind and upper-ocean variability associated with the Madden-Julian Oscillation simulated by the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS). Monthly Weather Review, 141(7): 2290–2307. doi: 10.1175/MWR-D-12-00273.1
    [63]
    Shinoda T, Jensen T G, Flatau M, et al. 2013b. Large-scale oceanic variability associated with the Madden-Julian Oscillation during the CINDY/DYNAMO field campaign from satellite observations. Remote Sensing, 5(5): 2072–2092. doi: 10.3390/rs5052072
    [64]
    Vinayachandran P N, Kurian J, Neema C P. 2007. Indian Ocean response to anomalous conditions in 2006. Geophysical Research Letters, 34(15): L15602
    [65]
    Vinayachandran P N, Saji N H, Yamagata T. 1999. Response of the equatorial Indian Ocean to an unusual wind event during 1994. Geophysical Research Letters, 26(11): 1613–1616. doi: 10.1029/1999GL900179
    [66]
    Webber B G M, Matthews A J, Heywood K J. 2010. A dynamical ocean feedback mechanism for the Madden-Julian oscillation. Quarterly Journal of the Royal Meteorological Society, 136(648): 740–754
    [67]
    Webber B G M, Matthews A J, Heywood K J, et al. 2012. Ocean Rossby waves as a triggering mechanism for primary Madden-Julian events. Quarterly Journal of the Royal Meteorological Society, 138(663): 514–527. doi: 10.1002/qj.936
    [68]
    Wu Yue, Liu Lin, Zhang Xinyou, et al. 2018. Different impacts from various El Niño events on Wyrtki jets in boreal autumn season. Pure and Applied Geophysics, 175(12): 4567–4577. doi: 10.1007/s00024-018-1928-4
    [69]
    Wyrtki K. 1973. An equatorial jet in the Indian Ocean. Science, 181(4096): 262–264. doi: 10.1126/science.181.4096.262
    [70]
    Yoshida K. 1959. A theory of the Cromwell Current and equatorial upwelling. Journal of the Oceanographical Society of Japan, 15: 154–170
    [71]
    Yuan Dongliang, Han Weiqing. 2006. Roles of equatorial waves and western boundary reflection in the seasonal circulation of the equatorial Indian Ocean. Journal of Physical Oceanography, 36(5): 930–944. doi: 10.1175/JPO2905.1
    [72]
    Zhang Chidong, Yoneyama K. 2017. CINDY/DYNAMO field campaign: Advancing our understanding of MJO initiation. In: World Scientific Series on Asia-Pacific Weather and Climate. Hackensack: World Scientific Publishing Co Pte Ltd, 339–348
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (394) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return