Citation: | Yuan He, Yuantu Ye, Songdong Shen. Effects of light and salinity on carotenoid biosynthesis in Ulva prolifera[J]. Acta Oceanologica Sinica, 2020, 39(10): 50-57. doi: 10.1007/s13131-020-1577-1 |
[1] |
Astley S B, Hughes D A, Wright A J A, et al. 2004. DNA damage and susceptibility to oxidative damage in lymphocytes: effects of carotenoids in vitro and in vivo. British Journal of Nutrition, 91(1): 53–61. doi: 10.1079/BJN20031028
|
[2] |
Bennett R N, Wallsgrove R M. 1994. Secondary metabolites in plant defence mechanisms. New Phytologist, 127(4): 617–633. doi: 10.1111/j.1469-8137.1994.tb02968.x
|
[3] |
Collins A R. 2001. Carotenoids and genomic stability. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 475(1–2): 21–28. doi: 10.1016/S0027-5107(01)00071-9
|
[4] |
Davies F K, Jinkerson R E, Posewitz M C. 2015. Toward a photosynthetic microbial platform for terpenoid engineering. Photosynthesis Research, 123(3): 265–284. doi: 10.1007/s11120-014-9979-6
|
[5] |
de Carvalho Gonçalves J F, Marenco R A, Vieira G. 2001. Concentration of photosynthetic pigments and chlorophyll fluorescence of mahogany and Tonka bean under two light environments. Revista Brasileira de Fisiologia Vegetal, 13(2): 149–157. doi: 10.1590/S0103-31312001000200004
|
[6] |
Duan Chuanren, Wang Bochu, Xu Shirong. 2003. The effects of the environment stress on the plant secondary metabolites. Journal of Chongqing University (in Chinese), 26(10): 67–71
|
[7] |
Gao Shan, Chen Xiaoyuan, Yi Qianqian, et al. 2010. A strategy for the proliferation of Ulva prolifera, main causative species of green tides, with formation of sporangia by fragmentation. PLoS One, 5(1): e8571. doi: 10.1371/journal.pone.0008571
|
[8] |
Guedes A C, Amaro H M, Malcata F X. 2011. Microalgae as sources of carotenoids. Marine Drugs, 9(4): 625–644. doi: 10.3390/md9040625
|
[9] |
He Yuan, Ma Yafeng, Du Yu, et al. 2018. Differential gene expression for carotenoid biosynthesis in a green alga Ulva prolifera based on transcriptome analysis. BMC Genomics, 19: 916. doi: 10.1186/s12864-018-5337-y
|
[10] |
He Yuan, Yan Zhihong, Du Yu, et al. 2017. Molecular cloning and expression analysis of two key genes, HDS and HDR, in the MEP pathway in Pyropia haitanensis. Scientific Reports, 7: 17499. doi: 10.1038/s41598-017-17521-9
|
[11] |
Kliebenstein D J. 2004. Secondary metabolites and plant/environment interactions: a view through Arabidopsis thaliana tinged glasses. Plant, Cell & Environment, 27(6): 675–684
|
[12] |
Lange B M, Rujan T, Martin W, et al. 2000. Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proceedings of the National Academy of Sciences of the United States of America, 97(24): 13172–13177. doi: 10.1073/pnas.240454797
|
[13] |
Lin Apeng, Shen Songdong, Wang jianwei, et al. 2008. Reproduction diversity of Enteromorpha prolifera. Journal of Integrative Plant Biology, 50(5): 622–629. doi: 10.1111/j.1744-7909.2008.00647.x
|
[14] |
Lohr M, Schwender J, Polle J E W. 2012. Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. Plant Science, 185–186: 9–22. doi: 10.1016/j.plantsci.2011.07.018
|
[15] |
Mikami K, Hosokawa M. 2013. Biosynthetic pathway and health benefits of fucoxanthin, an algae-specific xanthophyll in brown seaweeds. International Journal of Molecular Sciences, 14(7): 13763–13781. doi: 10.3390/ijms140713763
|
[16] |
Patias L D, Fernandes A S, Petry F C, et al. 2017. Carotenoid profile of three microalgae/cyanobacteria species with peroxyl radical scavenger capacity. Food Research International, 100: 260–266. doi: 10.1016/j.foodres.2017.06.069
|
[17] |
Rivasseau C, Seemann M, Boisson A M, et al. 2009. Accumulation of 2-C-methyl-D-erythritol 2, 4-cyclodiphosphate in illuminated plant leaves at supraoptimal temperatures reveals a bottleneck of the prokaryotic methylerythritol 4-phosphate pathway of isoprenoid biosynthesis. Plant, Cell & Environment, 32(1): 82–92
|
[18] |
Sharma E, Anand G, Kapoor R. 2017. Terpenoids in plant and arbuscular mycorrhiza-reinforced defence against herbivorous insects. Annals of Botany, 119(5): 791–801
|
[19] |
Shi Peng, Cao Hongxing, Li Dongxia, et al. 2016. Bioinformatics analysis of DXS gene from six tropical plants including oil palm (Elaeis guineensis Jacq). Guihaia (in Chinese), 36(4): 471–478
|
[20] |
Soto G, Stritzler M, Lisi C, et al. 2011. Acetoacetyl-CoA thiolase regulates the mevalonate pathway during abiotic stress adaptation. Journal of Experimental Botany, 62(15): 5699–5711. doi: 10.1093/jxb/err287
|
[21] |
Sun Guohua, Sui Zhenghong, Zhang Xuecheng. 2008. Cloning and characterization of the phytoene desaturase (pds) gene—a key enzyme for carotenoids synthesis in Dunaliella (Chlorophyta). Journal of Ocean University of China, 7(3): 311–318. doi: 10.1007/s11802-008-0311-y
|
[22] |
Takaichi S. 2011. Carotenoids in algae: distributions, biosyntheses and functions. Marine Drugs, 9(6): 1101–1118. doi: 10.3390/md9061101
|
[23] |
Vranová E. 2012. Systems understanding of isoprenoid pathway regulation in Arabidopsis. In: Bach T J, Rohmer M, eds. Isoprenoid Synthesis in Plants and Microorganisms. New York: Springer, 475-491
|
[24] |
Vranová E, Coman D, Gruissem W. 2013. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annual Review of Plant Biology, 64: 665–700. doi: 10.1146/annurev-arplant-050312-120116
|
[25] |
Wang Qian, Pi Yan, Hou Rong, et al. 2008. Molecular cloning and characterization of 1-hydroxy-2-methyl-2-(e)-butenyl 4-diphosphate reductase (CaHDR) from Camptotheca acuminata and its functional identification in Escherichia coli. BMB Reports, 41(2): 112–118. doi: 10.5483/BMBRep.2008.41.2.112
|
[26] |
Xiao Jie, Zhang Xiaohong, Gao Chunlei, et al. 2016. Effect of temperature, salinity and irradiance on growth and photosynthesis of Ulva prolifera. Acta Oceanologica Sinica, 35(10): 114–121. doi: 10.1007/s13131-016-0891-0
|
[27] |
Yang Jianming, Guo Lizhong. 2014. Biosynthesis of β-carotene in engineered E. coli using the MEP and MVA pathways. Microbial Cell Factories, 13: 160. doi: 10.1186/s12934-014-0160-x
|
[28] |
Yang Lien, Huang Xingqi, Lu Qinqin, et al. 2016. Cloning and characterization of the geranylgeranyl diphosphate synthase (GGPS) responsible for carotenoid biosynthesis in Pyropia umbilicalis. Journal of Applied Phycology, 28(1): 671–678. doi: 10.1007/s10811-015-0593-6
|
[29] |
Yuan Jianping, Peng Juan, Yin Kai, et al. 2011. Potential health-promoting effects of astaxanthin: a high-value carotenoid mostly from microalgae. Molecular Nutrition & Food Research, 55(1): 150–165
|
[30] |
Zhang Cui, Lu Jian, Wu Jun, et al. 2017. Removal of phenanthrene from coastal waters by green tide algae Ulva prolifera. Science of the Total Environment, 609: 1322–1328. doi: 10.1016/j.scitotenv.2017.07.187
|
[31] |
Zhang Huawei, Ma Jiahai, Hu Xiang, et al. 2011. Reproductive characteristics of the floating algae in green tide. Journal of Shanghai Ocean University (in Chinese), 20(4): 600–606
|
[32] |
Zhang Baoyu, Zhu Daling, Wang Guangce, et al. 2014. Characterization of the AOX gene and cyanide-resistant respiration in Pyropia haitanensis (rhodophyta). Journal of Applied Phycology, 26(6): 2425–2433. doi: 10.1007/s10811-014-0274-x
|
[33] |
Zhao Jin, Jiang Peng, Qiu Ri, et al. 2018. The yellow sea green tide: a risk of macroalgae invasion. Harmful Algae, 77: 11–17. doi: 10.1016/j.hal.2018.05.007
|
[34] |
Zheng Jiawen, Li Zhuosi, Manabe Y, et al. 2018. Siphonaxanthin, a carotenoid from green algae, inhibits lipogenesis in hepatocytes via the suppression of liver x receptor α activity. Lipids, 53(1): 41–52. doi: 10.1002/lipd.12002
|