Volume 40 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
Wei Duan, Xuhua Cheng, Xiuhua Zhu, Tian Ma. Variability in upper-ocean salinity stratification in the tropical Pacific Ocean[J]. Acta Oceanologica Sinica, 2021, 40(1): 113-125. doi: 10.1007/s13131-020-1597-x
Citation: Wei Duan, Xuhua Cheng, Xiuhua Zhu, Tian Ma. Variability in upper-ocean salinity stratification in the tropical Pacific Ocean[J]. Acta Oceanologica Sinica, 2021, 40(1): 113-125. doi: 10.1007/s13131-020-1597-x

Variability in upper-ocean salinity stratification in the tropical Pacific Ocean

doi: 10.1007/s13131-020-1597-x
Funds:  The National Key R&D Program of China under contract No. 2018YFA0605702; the National Natural Science Foundation of China under contract Nos 41876002 and 41776002; the Fundamental Research Funds for the Central Universities under contract Nos 2017B04714 and 2017B4114.
More Information
  • Corresponding author: E-mail: xuhuacheng@hhu.edu.cn
  • Received Date: 2020-03-12
  • Accepted Date: 2020-04-05
  • Available Online: 2021-04-21
  • Publish Date: 2021-01-25
  • Using a gridded array for real-time geostrophic oceanography (Argo) program float dataset, the features of upper-ocean salinity stratification in the tropical Pacific Ocean are studied. The salinity component of the squared Brunt-Väisälä frequency $ {N}^{2} $ ($ {N}_{S}^{2} $) is used to represent salinity stratification. Layer-max $ {N}_{S}^{2} $ (LMN), defined as the $ {N}_{S}^{2} $ maximum over the upper 300 m depth, and halocline depth (HD), defined as the depth where the $ {N}_{S}^{2} $ maximum is located, are used to specifically describe the intensity of salinity stratification. Salinity stratification in the Topical Pacific Ocean has both spatial and temporal variability. Over the western and eastern equatorial Pacific, the LMN has a large magnitude with a shallow HD, and both have completely opposite distributions outside of the equatorial region. An obvious seasonal cycle in the LMN occurs in the north side of eastern equatorial Pacific and freshwater flux forcing dominates the seasonal variations, followed by subsurface forcing. At the eastern edge of the western Pacific warm pool around the dateline, significant interannual variation of salinity stratification occurs and is closely related to the El Niño Southern Oscillation event. When an El Niño event occurs, the precipitation anomaly freshens sea surface and the thermocline shoaling induced by the westerly wind anomaly lifts salty water upward, together contribute to the positive salinity stratification anomaly over the eastern edge of the warm pool. The interannual variations in ocean stratification can slightly affect the propagation of first baroclinic gravity waves.
  • loading
  • [1]
    Adler R F, Sapiano M, Huffman G J, et al. 2018. The global precipitation climatology project (GPCP) monthly analysis (new version 2.3) and a review of 2017 global precipitation. Atmosphere, 9(4): 138. doi: 10.3390/atmos9040138
    [2]
    Alory G, Maes C, Delcroix T, et al. 2012. Seasonal dynamics of sea surface salinity off Panama: The far eastern Pacific fresh pool. Journal of Geophysical Research: Oceans, 117(C4): C04028. doi: 10.1029/2011JC007802
    [3]
    Bonjean F, Lagerloef G S E. 2002. Diagnostic model and analysis of the surface currents in the Tropical Pacific Ocean. Journal of Physical Oceanography, 32(10): 2938–2954. doi: 10.1175/1520-0485(2002)032<2938:DMAAOT>2.0.CO;2
    [4]
    Bosc C, Delcroix T, Maes C. 2009. Barrier layer variability in the western Pacific warm pool from 2000 to 2007. Journal of Geophysical Research: Oceans, 114(C6): C06023. doi: 10.1029/2008JC005187
    [5]
    Cai Shuqun, Long Xiaomin, Wu Renhao, et al. 2008. Geographical and monthly variability of the first baroclinic Rossby radius of deformation in the South China Sea. Journal of Marine Systems, 74(1–2): 711–720
    [6]
    Chelton D B, deSzoeke R A, Schlax M G, et al. 1998. Geographical variability of the first baroclinic Rossby radius of deformation. Journal of Physical Oceanography, 28(3): 433–460. doi: 10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2
    [7]
    Chen Ge, Peng Lin, Ma Chunyong. 2018. Climatology and seasonality of upper ocean salinity: A three-dimensional view from Argo floats. Climate Dynamics, 50(5–6): 2169–2182. doi: 10.1007/s00382-017-3742-6
    [8]
    Chi Jingshan, Du Yan, Zhang Yuhong, et al. 2019. A new perspective of the 2014/15 failed El Niño as seen from ocean salinity. Scientific Reports, 9: 2720. doi: 10.1038/s41598-019-38743-z
    [9]
    Chu P C, Fan Chenwu. 2011. Maximum angle method for determining mixed layer depth from seaglider data. Journal of Oceanography, 67(2): 219–230. doi: 10.1007/s10872-011-0019-2
    [10]
    Delcroix T, Hénin C. 1991. Seasonal and interannual variations of sea surface salinity in the tropical Pacific Ocean. Journal of Geophysical Research: Oceans, 96(C12): 22135–22150. doi: 10.1029/91JC02124
    [11]
    Delcroix T, McPhaden M. 2002. Interannual sea surface salinity and temperature changes in the western Pacific warm pool during 1992–2000. Journal of Geophysical Research: Oceans, 107(C12): SRF 3-1–SRF 3-17. doi: 10.1029/2001JC000862
    [12]
    Du Yan, Zhang Yuhong, Feng Ming, et al. 2015. Decadal trends of the upper ocean salinity in the tropical Indo-Pacific since mid-1990s. Scientific Reports, 5: 16050. doi: 10.1038/srep16050
    [13]
    Du Yan, Zhang Yuhong, Shi Jiancheng. 2019. Relationship between sea surface salinity and ocean circulation and climate change. Science China Earth Sciences, 62(5): 771–782. doi: 10.1007/s11430-018-9276-6
    [14]
    Entekhabi D, Njoku E G, O’Neill P E, et al. 2010. The soil moisture active passive (SMAP) mission. Proceedings of the IEEE, 98(5): 704–716. doi: 10.1109/JPROC.2010.2043918
    [15]
    Feng Ming, Hacker P, Lukas R. 1998. Upper ocean heat and salt balances in response to a westerly wind burst in the western equatorial Pacific during TOGA COARE. Journal of Geophysical Research: Oceans, 103(C5): 10289–10311. doi: 10.1029/97JC03286
    [16]
    Font J, Camps A, Borges A, et al. 2010. SMOS: The challenging sea surface salinity measurement from space. Proceedings of the IEEE, 98(5): 649–665. doi: 10.1109/JPROC.2009.2033096
    [17]
    Gasparin F, Roemmich D. 2016. The strong freshwater anomaly during the onset of the 2015/2016 El Niño. Geophysical Research Letters, 43(12): 6452–6460. doi: 10.1002/2016GL069542
    [18]
    Godfrey J S, Lindstrom E J. 1989. The heat budget of the equatorial western Pacific surface mixed layer. Journal of Geophysical Research: Oceans, 94(C6): 8007–8017. doi: 10.1029/JC094iC06p08007
    [19]
    Guan Cong, Hu Shijian, McPhaden M J, et al. 2019. Dipole structure of mixed layer salinity in response to El Niño-La Niña asymmetry in the tropical Pacific. Geophysical Research Letters, 46(21): 12165–12172. doi: 10.1029/2019GL084817
    [20]
    Guimbard S, Reul N, Chapron B, et al. 2017. Seasonal and interannual variability of the eastern tropical pacific fresh pool. Journal of Geophysical Research: Oceans, 122(3): 1749–1771. doi: 10.1002/2016jc012130
    [21]
    Hasson A E A, Delcroix T, Dussin R. 2013. An assessment of the mixed layer salinity budget in the tropical Pacific Ocean. Observations and modelling (1990–2009). Ocean Dynamics, 63(2–3): 179–194
    [22]
    Helber R W, Kara A B, Richman J G, et al. 2012. Temperature versus salinity gradients below the ocean mixed layer. Journal of Geophysical Research: Oceans, 117(C5): C05006. doi: 10.1029/2011JC007382
    [23]
    Kao H Y, Lagerloef G S. 2015. Salinity fronts in the tropical Pacific Ocean. Journal of Geophysical Research: Oceans, 120(2): 1096–1106. doi: 10.1002/2014JC010114
    [24]
    Lagerloef G, Colomb F R, Le Vine D, et al. 2008. The Aquarius/SAC-D mission: Designed to meet the salinity remote-sensing challenge. Oceanography, 21(1): 68–81
    [25]
    Lorbacher K, Dommenget D, Niiler P P, et al. 2006. Ocean mixed layer depth: A subsurface proxy of ocean-atmosphere variability. Journal of Geophysical Research: Oceans, 111(C7): C07010
    [26]
    Lu Shaolei, Liu Zenghong, Li Hong, et al. 2020. User Manual Of Global Ocean Argo Gridded Datasets (BOA_Argo) (in Chinese). Hangzhou: China Argo Real-Time Data Center, 28
    [27]
    Lukas R, Lindstrom E. 1991. The mixed layer of the western equatorial Pacific Ocean. Journal of Geophysical Research: Oceans, 96(S01): 3343–3357. doi: 10.1029/90JC01951
    [28]
    Maes C. 2008. On the ocean salinity stratification observed at the eastern edge of the equatorial Pacific warm pool. Journal of Geophysical Research: Oceans, 113(C3): C03027. doi: 10.1029/2007JC004297
    [29]
    Maes C, O’Kane T J. 2014. Seasonal variations of the upper ocean salinity stratification in the Tropics. Journal of Geophysical Research: Oceans, 119(3): 1706–1722. doi: 10.1002/2013JC009366
    [30]
    McDougall T J. 1987. Neutral surfaces. Journal of Physical Oceanography, 17(11): 1950–1964. doi: 10.1175/1520-0485(1987)017<1950:NS>2.0.CO;2
    [31]
    O’Kane T J, Monselesan D P, Maes C. 2016. On the stability and spatiotemporal variance distribution of salinity in the upper ocean. Journal of Geophysical Research: Oceans, 121(6): 4128–4148. doi: 10.1002/2015JC011523
    [32]
    Qu Tangdong, Gao Shan, Fine R A. 2013. Subduction of South Pacific tropical water and its equatorward pathways as shown by a simulated passive tracer. Journal of Physical Oceanography, 43(8): 1551–1565. doi: 10.1175/jpo-d-12-0180.1
    [33]
    Qu Tangdong, Gao Shan, Fukumori I. 2011. What governs the North Atlantic salinity maximum in a global GCM?. Geophysical Research Letters, 38(7): L07602. doi: 10.1029/2011GL046757
    [34]
    Qu Tangdong, Song Y T, Maes C. 2014. Sea surface salinity and barrier layer variability in the equatorial Pacific as seen from Aquarius and Argo. Journal of Geophysical Research: Oceans, 119(1): 15–29. doi: 10.1002/2013JC009375
    [35]
    Qu Tangdong, Yu Jinyi. 2014. ENSO indices from sea surface salinity observed by Aquarius and Argo. Journal of Oceanography, 70(4): 367–375. doi: 10.1007/s10872-014-0238-4
    [36]
    Roemmich D, Johnson G C, Riser S, et al. 2009. The Argo Program: observing the Global Ocean with profiling floats. Oceanography, 22(2): 34–43
    [37]
    Simmons A, Uppala S, Dee D, et al. 2006. ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, 110: 26–35
    [38]
    Singh A, Delcroix T, Cravatte S. 2011. Contrasting the flavors of El Niño-Southern Oscillation using sea surface salinity observations. Journal of Geophysical Research: Oceans, 116(C6): C06016. doi: 10.1029/2010JC006862
    [39]
    Sprintall J, Tomczak M. 1992. Evidence of the barrier layer in the surface layer of the tropics. Journal of Geophysical Research: Oceans, 97(C5): 7305–7316. doi: 10.1029/92JC00407
    [40]
    Vialard J, Delecluse P. 1998. An OGCM study for the TOGA decade. Part II: Barrier-layer formation and variability. Journal of physical oceanography, 28(6): 1089–1106. doi: 10.1175/1520-0485(1998)028<1089:AOSFTT>2.0.CO;2
    [41]
    Wang Xidong, Liu Hailong. 2016. Seasonal-to-interannual variability of the barrier layer in the western Pacific warm pool associated with ENSO. Climate Dynamics, 47(1–2): 375–392. doi: 10.1007/s00382-015-2842-4
    [42]
    Xie Shangping. 1999. A dynamic ocean-atmosphere model of the Tropical Atlantic decadal variability. Journal of Climate, 12(1): 64–70. doi: 10.1175/1520-0442-12.1.64
    [43]
    Xie Shangping. 2004. The shape of continents, air-sea interaction, and the rising branch of the Hadley Circulation. In: Diaz H F, Bradley R S, eds. The Hadley Circulation: Present, Past and Future. Dordrecht: Springer, 121–152, doi: 10.1007/978-1-4020-2944-8_5
    [44]
    Xie Shangping, Xu Haiming, Kessler W S, et al. 2005. Air-sea interaction over the eastern Pacific warm pool: Gap winds, thermocline dome, and atmospheric convection. Journal of Climate, 18(1): 5–20. doi: 10.1175/JCLI-3249.1
    [45]
    Yu Lisan. 2011. A global relationship between the ocean water cycle and near-surface salinity. Journal of Geophysical Research: Oceans, 116(C10): C10025. doi: 10.1029/2010JC006937
    [46]
    Yu Lisan, Jin Xiangze, Weller R A. 2008. Multidecade global flux datasets from the objectively analyzed air-sea fluxes (OAFlux) Project: latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Massachusetts: Woods Hole Oceanographic Institution, 64
    [47]
    Zheng Fei, Zhang Ronghua. 2012. Effects of interannual salinity variability and freshwater flux forcing on the development of the 2007/08 La Niña event diagnosed from Argo and satellite data. Dynamics of Atmospheres and Oceans, 57: 45–57. doi: 10.1016/j.dynatmoce.2012.06.002
    [48]
    Zhi Hai, Zhang Ronghua, Lin Pengfei, et al. 2015. Quantitative analysis of the feedback induced by the freshwater flux in the tropical Pacific using CMIP5. Advances in Atmospheric Sciences, 32(10): 1341–1353. doi: 10.1007/s00376-015-5064-0
    [49]
    Zhi Hai, Lin Pengfei, Zhang Ronghua, et al. 2019a. Salinity effects on the 2014 warm “Blob” in the Northeast Pacific. Acta Oceanologica Sinica, 38(9): 24–34. doi: 10.1007/s13131-019-1450-2
    [50]
    Zhi Hai, Zhang Ronghua, Lin Pengfei, et al. 2019b. Interannual salinity variability in the tropical Pacific in CMIP5 simulations. Advances in Atmospheric Sciences, 36(4): 378–396. doi: 10.1007/s00376-018-7309-1
    [51]
    Zhi Hai, Zhang Ronghua, Lin Pengfei, et al. 2019c. Effects of salinity variability on recent El Niño events. Atmosphere, 10(8): 475. doi: 10.3390/atmos10080475
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Article Metrics

    Article views (600) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return