Volume 39 Issue 5
May  2020
Turn off MathJax
Article Contents
Wanlin Zhai, Jianhua Zhu, Chaofei Ma, Xiaohui Fan, Longhao Yan, He Wang, Chuntao Chen. Measurement of the sea surface using a GPS towing-body in Wanshan area[J]. Acta Oceanologica Sinica, 2020, 39(5): 123-132. doi: 10.1007/s13131-020-1599-8
Citation: Wanlin Zhai, Jianhua Zhu, Chaofei Ma, Xiaohui Fan, Longhao Yan, He Wang, Chuntao Chen. Measurement of the sea surface using a GPS towing-body in Wanshan area[J]. Acta Oceanologica Sinica, 2020, 39(5): 123-132. doi: 10.1007/s13131-020-1599-8

Measurement of the sea surface using a GPS towing-body in Wanshan area

doi: 10.1007/s13131-020-1599-8
Funds:  The National Key R&D Program of China under contract No. 2018YFB0504900; the National Natural Science Foundation of China under contract Nos 41406204 and 41501417; Operational Support Service System For Natural Resources Satellite Remote Sensing.
More Information
  • Corresponding author: E-Mail: zwl13032@163.com
  • Received Date: 2019-06-13
  • Accepted Date: 2019-07-15
  • Available Online: 2020-12-28
  • Publish Date: 2020-05-25
  • Wanshan area has been chosen to be the specified field to calibrate and validate (Cal/Val) the HY-2 altimeter and its follow-on satellites. In March 2018, an experiment has been conducted to determine the sea surface height (SSH) under the HY-2A ground track (Pass No. 203). A GPS towing-body (GPS-TB) was designed to measure the SSH covering an area of about 6 km×28 km wide centered on the HY-2A altimeter satellite ground track. Three GPS reference stations, one tide gauge and a GPS buoy were placed in the research area, in order to process and resolve the kinematic solution and check the precision of the GPS-TB respectively. All the GPS data were calculated by the GAMIT/GLOBK software and TRACK module. The sea surface was determined by the GPS-TB solution and the tide gauge placed on Zhiwan Island. Then the sea surface of this area was interpolated by ArcGIS 10.2 with ordinary Kriging method. The results showed that the precision of the GPS-TB is about 1.10 cm compared with the tide gauge placed nearby, which has an equivalent precision with the GPS buoy. The interpolated sea surface has a bias of –1.5–4.0 cm with standard deviation of 0.2–2.4 cm compared with the checking line. The gradient of the measured sea surface is about 1.62 cm/km along the HY-2 orbit which shows a good agreement compared with the CLS11 mean sea surface (MSS). In the Cal/Val of satellites, the sea surface between the tide gauge/GPS buoy and the footprint of altimeter can be improved by this work.
  • loading
  • [1]
    Boehm J R, Heinkelmann and Schuh H. 2007. Short note: A global model of pressure and temperature for geodetic applications. Journal of Geodesy, 81: 679–683. doi: 10.1007/s00190-007-0135-3
    [2]
    Bonnefond P, Exertier P, Laurain O, et al. 2003. Absolute calibration of Jason-1 and TOPEX/Poseidon altimeters in Corsica. Marine Geodesy, 26(3-4): 261–284. doi: 10.1080/714044521
    [3]
    Bonnefond P, Exertier P, Laurain O, et al. 2013. GPS-based sea level measurements to help the characterization of land contamination in coastal area. Advances in Space Research, 51(8): 1383–1399. doi: 10.1016/j.asr.2012.07.007
    [4]
    Bouin M N, Ballu V, Calmant S, et al. 2009. A kinematic GPS methodology for sea surface mapping, Vanuatu. Journal of Geodesy, 83(12): 1203–1217. doi: 10.1007/s00190-009-0338-x
    [5]
    Chen Chuntao, Zhai Wanlin, Yan Longhao, et al. 2014. Assessment of the GPS buoy accuracy for altimeter sea surface height calibration. In: Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium. Quebec City, QC, Canada: IEEE, 3101-3104
    [6]
    Chen Chuntao, Zhu Jianhua, Zhai Wanlin, et al. 2019. Absolute calibration of HY-2A and Jason-2 altimeters for sea surface height using GPS buoy in Qinglan, China. Journal of Oceanology and Limnology, 37(5): 1533–1541. doi: 10.1007/s00343-019-8216-8
    [7]
    Estey L, Wier S. 2014.Teqc Tutorial: basics of Teqc Use and Teqc products. https://www.unavco.org/software/data-processing/teqc/doc/UNAVCO_Teqc_Tutorial.pdf [2014–06–06]
    [8]
    Foster J H, Carter G S, Merrifield M A. 2009. Ship-based measurements of sea surface topography. Geophysical Research Letters, 36(11): L11605. doi: 10.1029/2009GL038324
    [9]
    Herring T A. 2012. TRACK GPS kinematic positioning program, Version 1.07. Cambridge, MA: Massachusetts Institute of Technology. https://ocw.mit.edu/courses/earth-atmospheric-and-planetary-sciences/12-540-principles-of-the-global-positioning-system-spring-2012/lecture-notes/MIT12_540S12_lec22.pdf
    [10]
    Herring T A, King R W, Floyd M A, et al. 2018. GPS Analysis at MIT Release 10.7. Cambridge: Massachusetts Institute of Technology http://geoweb.mit.edu/gg/Intro_GG.pdf
    [11]
    Jiang Xingwei, Lin Mingsen, Liu Jianqiang, et al. 2012. The HY-2 satellite and its preliminary assessment. International Journal of Digital Earth, 5(3): 266–281. doi: 10.1080/17538947.2012.658685
    [12]
    Jiang Xingwei, Lin Mingsen, Song Qingjun. 2016. On the construction of China’s ocean satellite radar altimetry calibration site. Ocean Development and Management (in Chinese), 33(5): 8–15
    [13]
    Liibusk A, Jürgenson H. 2009. Detecting the Baltic Sea level surface with GPS-measurements and comparing it with the local geoid model. In: Sideris M G, ed. Observing our Changing Earth. Berlin, Heidelberg: Springer, 125–134
    [14]
    Liu Yalong, Tang Junwu, Zhu Jianhua, et al. 2014. An improved method of absolute calibration to satellite altimeter: A case study in the Yellow Sea, China. Acta Oceanologica Sinica, 33(5): 103–112. doi: 10.1007/s13131-014-0476-8
    [15]
    Löfgren J S, Haas R, Scherneck H G. 2014. Sea level time series and ocean tide analysis from multipath signals at five GPS sites in different parts of the world. Journal of Geodynamics, 80: 66–80. doi: 10.1016/j.jog.2014.02.012
    [16]
    Lyard F, Lefevre F, Letellier T, et al. 2006. Modelling the global ocean tides: modern insights from FES2004. Ocean Dynamics, 56(5–6): 394–415. doi: 10.1007/s10236-006-0086-x
    [17]
    Maqueda M A M, Penna N T, Williams S D P, et al. 2016. Water surface height determination with a GPS wave glider: a demonstration in Loch Ness, Scotland. Journal of Atmospheric and Oceanic Technology, 33(6): 1159–1168. doi: 10.1175/JTECH-D-15-0162.1
    [18]
    Ménard Y, Jeansou E, Vincent P. 1994. Calibration of the TOPEX/POSEIDON altimeters at Lampedusa: additional results at harvest. Journal of Geophysical Research, 99(C12): 24487–24504. doi: 10.1029/94JC01300
    [19]
    Pei Yuhua, Zhang Ronghua, Zhang Xiangming, et al. 2015. Variability of sea surface height in the South China Sea and its relationship to Pacific oscillations. Acta Oceanologica Sinica, 34(12): 80–92. doi: 10.1007/s13131-015-0773-x
    [20]
    Penna N, Maqueda M A M, Martin I, et al. 2018. Sea surface height measurement using a GNSS wave glider. Geophysical Research Letters, 45(11): 5609–5616. doi: 10.1029/2018GL077950
    [21]
    Saastamoinen J. 1972. Contributions to the theory of atmospheric refraction. Bulletin Géodésique (1946–1975), 105(1): 279–298. doi: 10.1007/BF02521844
    [22]
    Schaeffer P, Faugére Y, Legeais J F, et al. 2012. The CNES_CLS11 global mean sea surface computed from 16 years of satellite altimeter data. Marine Geodesy, 35(S1): 3–19
    [23]
    Stewart R H. 2008. Introduction to Physical Oceanography. Texas: Texas A&M University
    [24]
    Tang Yuxiang, Sun Hongliang, Hu Xiaomin, et al. 2007. GB/T 12763.2-2007 Specifications for oceanographic survey-Part 2: Marine hydrographic observation (in Chinese). Beijing: China Standard Press
    [25]
    Villiger A, Dach R. 2018. IGS international technical report 2017. Bern: Astronomical Institute, University of Bern
    [26]
    Watson C, Coleman R, White N, et al. 2003. Absolute Calibration of T/P and Jason-1 Using GPS Buoys in Bass Strait, Australia. Marine Geodesy, 26(3–4): 285–304. doi: 10.1080/714044522
    [27]
    Watson C, Coleman R, Handsworth R. 2008. Coastal tide gauge calibration: a case study at Macquarie Island using GPS buoy techniques. Journal of Coastal Research, 24(4): 1071–1079
    [28]
    Watson C, White N, Church J, et al. 2011. Absolute calibration in bass strait, Australia: TOPEX, Jason-1 and OSTM/Jason-2. Marine Geodesy, 34(3–4): 242–260. doi: 10.1080/01490419.2011.584834
    [29]
    Wu Shilin, Zhang Qi. 2010. Error Analysis and Data Processing (in Chinese). Beijing: Tsinghua University Press, 113–116
    [30]
    Xu Xiyu, Xu Ke, Shen Hua, et al. 2016. Sea surface height and significant wave height calibration methodology by a GNSS buoy campaign for HY-2A altimeter. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(11): 5252–5261. doi: 10.1109/JSTARS.2016.2584626
    [31]
    Yang Lei, Zhou Xinghua, Mertikas S P, et al. 2017. First calibration results of Jason-2 and SARAL/AltiKa satellite altimeters from the Qianli Yan permanent Cal/Val facilities, China. Advances in Space Research, 59(12): 2831–2842. doi: 10.1016/j.asr.2017.02.044
    [32]
    Zhai Wanlin, Chen Chuntao, Zhu Jianhua, et al. 2016. Research of calibration of satellite altimeter technology based on GPS Bouy. Remote Sensing Technology and Application (in Chinese), 31(5): 925–929
    [33]
    Zhang Xiaoshuang, Wang Xidong, Cao Yingzhi, et al. 2015. Climate modulation on sea surface height in China seas. Chinese Journal of Oceanology and Limnology, 33(5): 1245–1255. doi: 10.1007/s00343-015-4120-z
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article Metrics

    Article views (261) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return