Volume 39 Issue 8
Aug.  2020
Turn off MathJax
Article Contents
Jia Sun, Guihua Wang, Xuejun Xiong, Zhenli Hui, Xiaomin Hu, Zheng Ling, Long Yu, Guangbing Yang, Yanliang Guo, Xia Ju, Liang Chen. Impact of warm mesoscale eddy on tropical cyclone intensity[J]. Acta Oceanologica Sinica, 2020, 39(8): 1-13. doi: 10.1007/s13131-020-1617-x
Citation: Jia Sun, Guihua Wang, Xuejun Xiong, Zhenli Hui, Xiaomin Hu, Zheng Ling, Long Yu, Guangbing Yang, Yanliang Guo, Xia Ju, Liang Chen. Impact of warm mesoscale eddy on tropical cyclone intensity[J]. Acta Oceanologica Sinica, 2020, 39(8): 1-13. doi: 10.1007/s13131-020-1617-x

Impact of warm mesoscale eddy on tropical cyclone intensity

doi: 10.1007/s13131-020-1617-x
Funds:  The National Natural Science Foundation of China under contract No. 41706034; the Basic Scientific Fund for National Public Research Institutes of China under contract No. 2020Q05; the Open Fund of the Key Laboratory of Ocean Circulation and Waves, Chinese Academy of Sciences under contract Nos KLOCW1803 and KLOCW1804; the Open Fund of the Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology under contract No. 2019A02; the National Natural Science Foundation of China under contract Nos 91428206 and 41376038; the National Science and Technology Major Project under contract No. 2016ZX05057015; the National Programme on Global Change and Air-Sea Interaction under contract Nos GASI-03-01-01-02 and GASI-IPOVAI-01-05; the NSFC-Shandong Joint Fund for Marine Science Research Centers under contract No. U1606405.
More Information
  • Corresponding author: E-mail: wghocean@yahoo.com
  • Received Date: 2019-12-25
  • Accepted Date: 2020-03-05
  • Available Online: 2020-12-28
  • Publish Date: 2020-08-25
  • The spatial-temporal patterns of tropical cyclone (TC) intensity changes caused by the warm ocean mesoscale eddy (WOME) distribution are evaluated using two sets of idealized numerical experiments. The results show that the TC was intensified and weakened when a WOME was close to and far away from the TC center, respectively. The area where the WOME enhanced (weakened) TC intensity is called the inner (outer) area in this study. Amplitudes of the enhancement and weakening caused by the WOME in the inner and outer area decreased and increased over time, while the ranges of the inner and outer area diminished and expanded, respectively. The WOME in the inner area strengthened the secondary circulation of the TC, increased heat fluxes, strengthened the symmetry, and weakened the outer spiral rainband, which enhanced TC intensity. The effect was opposite if the WOME was in the outer area, and it weakened the TC intensity. The idealized simulation employed a stationary TC, and thus the results may only be applied to TCs with slow propagation. These findings can improve our understanding of the interactions between TC and the WOME and are helpful for improving TC intensity forecasting by considering the effect of the WOME in the outer areas.
  • loading
  • [1]
    Anandh T S, Das B K, Kuttippurath J, et al. 2020. A coupled model analyses on the interaction between oceanic eddies and tropical cyclones over the Bay of Bengal. Ocean Dynamics, 70(3): 327–337. doi: 10.1007/s10236-019-01330-x
    [2]
    Chaigneau A, Eldin G, Dewitte B. 2009. Eddy activity in the four major upwelling systems from satellite altimetry (1992–2007). Progress in Oceanography, 83(1–4): 117–123
    [3]
    Chan J C L, Duan Yihong, Shay L K. 2001. Tropical cyclone intensity change from a simple ocean–atmosphere coupled model. Journal of the Atmospheric Sciences, 58(2): 154–172. doi: 10.1175/1520-0469(2001)058<0154:TCICFA>2.0.CO;2
    [4]
    Chelton D B, Schlax M G, Samelson R M. 2011. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2): 167–216. doi: 10.1016/j.pocean.2011.01.002
    [5]
    Chen Lianshou, Ding Yihui. 1979. An Introduction to the West Pacific Ocean Typhoons (in Chinese). Beijing: Science Press, 1–491
    [6]
    Cheng Y H, Ho C R, Zheng Quanan, et al. 2014. Statistical characteristics of mesoscale eddies in the north pacific derived from satellite altimetry. Remote Sensing, 6(6): 5164–5183. doi: 10.3390/rs6065164
    [7]
    Dong Changming, McWilliams J C, Liu Yu, et al. 2014. Global heat and salt transports by eddy movement. Nature Communications, 5(1): 3294. doi: 10.1038/ncomms4294
    [8]
    Emanuel K A. 1986. An air-sea interaction theory for tropical cyclones. Part I: steady-state maintenance. Journal of the Atmospheric Sciences, 43(6): 585–605. doi: 10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2
    [9]
    Emanuel K A. 1988. The maximum intensity of hurricanes. Journal of the Atmospheric Sciences, 45(7): 1143–1155. doi: 10.1175/1520-0469(1988)045<1143:TMIOH>2.0.CO;2
    [10]
    Emanuel K, DesAutels C, Holloway C, et al. 2004. Environmental control of tropical cyclone intensity. Journal of the Atmospheric Sciences, 61(7): 843–858. doi: 10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2
    [11]
    Evans J L. 1993. Sensitivity of tropical cyclone intensity to sea surface temperature. Journal of Climate, 6(6): 1133–1140. doi: 10.1175/1520-0442(1993)006<1133:SOTCIT>2.0.CO;2
    [12]
    Frenger I, Gruber N, Knutti R, et al. 2013. Imprint of southern ocean eddies on winds, clouds and rainfall. Nature Geoscience, 6(8): 608–612. doi: 10.1038/ngeo1863
    [13]
    Halliwell G R Jr, Shay L K, Brewster J K, et al. 2011. Evaluation and sensitivity analysis of an ocean model response to Hurricane Ivan. Monthly Weather Review, 139(3): 921–945. doi: 10.1175/2010MWR3104.1
    [14]
    Hong Xiaodong, Chang S W, Raman S, et al. 2000. The interaction between hurricane opal (1995) and a warm core ring in the Gulf of Mexico. Monthly Weather Review, 128(5): 1347–365. doi: 10.1175/1520-0493(2000)128<1347:TIBHOA>2.0.CO;2
    [15]
    Hong S Y, Lim J O J. 2006. The WRF single-moment 6-class microphysics scheme (WSM6). Asia-Pacific Journal of Atmospheric Sciences, 42(2): 129–151
    [16]
    Jaimes B, Shay L K. 2015. Enhanced wind-driven downwelling flow in warm oceanic eddy features during the intensification of Tropical Cyclone Isaac (2012): observations and theory. Journal of Physical Oceanography, 45(6): 1667–1689. doi: 10.1175/JPO-D-14-0176.1
    [17]
    Jaimes B, Shay L K, Brewster J K. 2016. Observed air-sea interactions in tropical cyclone Isaac over Loop Current mesoscale eddy features. Dynamics of Atmospheres and Oceans, 76: 306–324. doi: 10.1016/j.dynatmoce.2016.03.001
    [18]
    Jaimes B, Shay L K, Halliwell G R. 2011. The response of quasigeostrophic oceanic vortices to tropical cyclone forcing. Journal of Physical Oceanography, 41(10): 1965–1985. doi: 10.1175/JPO-D-11-06.1
    [19]
    Jiménez P A, Dudhia J, González-Rouco J F, et al. 2012. A revised scheme for the WRF surface layer formulation. Monthly Weather Review, 140(3): 898–918. doi: 10.1175/MWR-D-11-00056.1
    [20]
    Jordan C L. 1958. Mean soundings for the West Indies area. Journal of Meteorology, 15(1): 91–97. doi: 10.1175/1520-0469(1958)015<0091:MSFTWI>2.0.CO;2
    [21]
    Lavender S L, Hoeke R K, Abbs D J. 2018. The influence of sea surface temperature on the intensity and associated storm surge of tropical cyclone Yasi: a sensitivity study. Natural Hazards and Earth System Sciences, 18(3): 795–805. doi: 10.5194/nhess-18-795-2018
    [22]
    Lee C Y, Chen S S. 2014. Stable boundary layer and its impact on tropical cyclone structure in a coupled atmosphere-ocean model. Monthly Weather Review, 142(5): 1927–1944. doi: 10.1175/MWR-D-13-00122.1
    [23]
    Lin I I, Black P, Price J F, et al. 2013. An ocean coupling potential intensity index for tropical cyclones. Geophysical Research Letters, 40(9): 1878–1882. doi: 10.1002/grl.50091
    [24]
    Lin I I, Pun I F, Wu C C. 2009. Upper-ocean thermal structure and the western North Pacific category 5 typhoons: Part II. dependence on translation speed. Monthly Weather Review, 137(11): 3744–3757. doi: 10.1175/2009MWR2713.1
    [25]
    Lin I I, Pun I F, Lien C C. 2014. “Category-6” supertyphoon Haiyan in global warming hiatus: Contribution from subsurface ocean warming. Geophysical Research Letters, 41(23): 8547–8553. doi: 10.1002/2014GL061281
    [26]
    Lin I I, Wu C C, Emanuel K A, et al. 2005. The interaction of supertyphoon Maemi (2003) with a warm ocean eddy. Monthly Weather Review, 133(9): 2635–2649. doi: 10.1175/MWR3005.1
    [27]
    Locarnini R A, Mishonov A V, Baranova O K, et al. 2018. World Ocean Atlas 2018, Volume 1: Temperature. NOAA Atlas NESDIS 81. US: NOAA, 52
    [28]
    Lu Zhumin, Wang Guihua, Shang Xiaodong. 2016. Response of a preexisting cyclonic ocean eddy to a typhoon. Journal of Physical Oceanography, 46(8): 2403–2410. doi: 10.1175/JPO-D-16-0040.1
    [29]
    Lumpkin R. 2016. Global characteristics of coherent vortices from surface drifter trajectories. Journal of Geophysical Research: Oceans, 121(2): 1306–1321. doi: 10.1002/2015JC011435
    [30]
    Ma Zhanhong, Fei Jianfang, Liu Lei, et al. 2017. An investigation of the influences of mesoscale ocean eddies on tropical cyclone intensities. Monthly Weather Review, 145(4): 1181–1201. doi: 10.1175/MWR-D-16-0253.1
    [31]
    Mainelli M, DeMaria M, Shay L K, et al. 2008. Application of oceanic heat content estimation to operational forecasting of recent Atlantic category 5 hurricanes. Weather and Forecasting, 23(1): 3–16. doi: 10.1175/2007WAF2006111.1
    [32]
    Mathur M B. 1998. Development of an eye-wall like structure in a tropical cyclone model simulation. Dynamics of Atmospheres and Oceans, 27(1–4): 527–547
    [33]
    Powell M D, Vickery P J, Reinhold T A. 2003. Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422(6929): 279–283. doi: 10.1038/nature01481
    [34]
    Price J F. 1981. Upper ocean response to a hurricane. Journal of Physical Oceanography, 11(2): 153–175. doi: 10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2
    [35]
    Price J F, Sanford T B, Forristall G Z. 1994. Forced stage response to a moving hurricane. Journal of Physical Oceanography, 24(2): 233–260. doi: 10.1175/1520-0485(1994)024<0233:FSRTAM>2.0.CO;2
    [36]
    Riehl H. 1950. A model of hurricane formation. Journal of Applied Physics, 21(9): 917–925. doi: 10.1063/1.1699784
    [37]
    Riemer M, Montgomery M T, Nicholls M E. 2010. A new paradigm for intensity modification of tropical cyclones: thermodynamic impact of vertical wind shear on the inflow layer. Atmospheric Chemistry and Physics, 10(7): 3163–3188. doi: 10.5194/acp-10-3163-2010
    [38]
    Rotunno R, Emanuel K A. 1987. An air-sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. Journal of the Atmospheric Sciences, 44(3): 542–561. doi: 10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2
    [39]
    Schade L R. 2000. Tropical cyclone intensity and sea surface temperature. Journal of the Atmospheric Sciences, 57(18): 3122–3130. doi: 10.1175/1520-0469(2000)057<3122:TCIASS>2.0.CO;2
    [40]
    Schade L R, Emanuel K A. 1999. The ocean’s effect on the intensity of tropical cyclones: results from a simple coupled atmosphere-ocean model. Journal of the Atmospheric Sciences, 56(4): 642–651. doi: 10.1175/1520-0469(1999)056<0642:TOSEOT>2.0.CO;2
    [41]
    Shan Haixia, Dong Changming. 2019. Atmospheric responses to oceanic mesoscale eddies based on an idealized model. International Journal of Climatology, 39(3): 1665–1683. doi: 10.1002/joc.5908
    [42]
    Shapiro L J. 1982. Hurricane climatic fluctuations: Part II. Relation to large-scale circulation. Monthly Weather Review, 110(8): 1014–1023. doi: 10.1175/1520-0493(1982)110<1014:HCFPIR>2.0.CO;2
    [43]
    Shay L K. 2009. Upper ocean structure: responses to strong Atmospheric forcing events. In: Steele J H, ed. Encyclopedia of Ocean Sciences. 2nd ed. Amsterdam: Elsevier Press, 192–210
    [44]
    Shay L K. 2010. Air-sea interactions in tropical cyclones. In: Chan J C L, Kepert J D, eds. Global Perspectives on Tropical Cyclones: From Science to Mitigation. Singapore: World Scientific, 93–131
    [45]
    Shay L K, Brewster J K. 2010. Oceanic heat content variability in the eastern Pacific Ocean for hurricane intensity forecasting. Monthly Weather Review, 138(6): 2110–2131. doi: 10.1175/2010MWR3189.1
    [46]
    Shay L K, Goni G J, Black P G. 2000. Effects of a warm oceanic feature on hurricane Opal. Monthly Weather Review, 128(5): 1366–1383. doi: 10.1175/1520-0493(2000)128<1366:EOAWOF>2.0.CO;2
    [47]
    Skamarock W C, Klemp J B, Dudhia J, et al. 2008. A description of the advanced research WRF version 3. NCAR Technical Note, NCAR/TN-475+STR. Boulder: National Center for Atmospheric Research
    [48]
    Sun Jia, Wang Dingqi, Hu Xiaomin, et al. 2019. Ongoing poleward migration of tropical cyclone occurrence over the western North Pacific Ocean. Geophysical Research Letters, 46(15): 9110–9117. doi: 10.1029/2019GL084260
    [49]
    Sun Jia, Wang Guihua, Zuo Juncheng, et al. 2017a. Role of surface warming in the northward shift of tropical cyclone tracks over the South China Sea in November. Acta Oceanologica Sinica, 36(5): 67–72. doi: 10.1007/s13131-017-1061-8
    [50]
    Sun Yuan, Zhong Zhong, Ha Yao, et al. 2013. The dynamic and thermodynamic effects of relative and absolute sea surface temperature on tropical cyclone intensity. Acta Meteorologica Sinica, 27(1): 40–49. doi: 10.1007/s13351-013-0105-z
    [51]
    Sun Yuan, Zhong Zhong, Li T, et al. 2017b. Impact of ocean warming on tropical cyclone size and its destructiveness. Scientific Report, 7(1): 8154. doi: 10.1038/s41598-017-08533-6
    [52]
    Sun Yuan, Zhong Zhong, Yi Lan, et al. 2014. The opposite effects of inner and outer sea surface temperature on tropical cyclone intensity. Journal of Geophysical Research: Atmospheres, 119(5): 2193–2208. doi: 10.1002/2013JD021354
    [53]
    Sun Jia, Zuo Juncheng, Ling Zheng, et al. 2016. Role of ocean upper layer warm water in the rapid intensification of tropical cyclones: a case study of typhoon Rammasun (1409). Acta Oceanologica Sinica, 35(3): 63–68. doi: 10.1007/s13131-015-0761-1
    [54]
    Wadler J B, Zhang J A, Jaimes B, et al. 2018. Downdrafts and the evolution of boundary layer thermodynamics in Hurricane Earl (2010) before and during rapid intensification. Monthly Weather Review, 146(11): 3545–3565. doi: 10.1175/MWR-D-18-0090.1
    [55]
    Wang Yuqing. 2002. Vortex Rossby waves in a numerically simulated tropical cyclone: Part II. the role in tropical cyclone structure and intensity changes. Journal of the Atmospheric Sciences, 59(7): 1239–1262. doi: 10.1175/1520-0469(2002)059<1239:VRWIAN>2.0.CO;2
    [56]
    Wang Yuqing. 2009. How do outer spiral rainbands affect tropical cyclone structure and intensity?. Journal of the Atmospheric Sciences, 66(5): 1250–1273. doi: 10.1175/2008JAS2737.1
    [57]
    Willoughby H E, Marks F D Jr, Feinberg R J. 1984. Stationary and moving convective bands in hurricanes. Journal of the Atmospheric Sciences, 41(22): 3189–3211. doi: 10.1175/1520-0469(1984)041<3189:SAMCBI>2.0.CO;2
    [58]
    Wu C C, Lee C Y, Lin I I. 2007. The effect of the ocean eddy on tropical cyclone intensity. Journal of the Atmospheric Sciences, 64(10): 3562–3578. doi: 10.1175/JAS4051.1
    [59]
    Wu C C, Tu W T, Pun I F, et al. 2016. Tropical cyclone-ocean interaction in Typhoon Megi (2010)—A synergy study based on ITOP observations and atmosphere-ocean coupled model simulations. Journal of Geophysical Research: Atmospheres, 121(1): 153–167. doi: 10.1002/2015JD024198
    [60]
    Wu Liguang, Wang Bin, Braun S A. 2005. Impacts of air-sea interaction on tropical cyclone track and intensity. Monthly Weather Review, 133(11): 3299–3314. doi: 10.1175/MWR3030.1
    [61]
    Wu Liguang, Wang Ruifang, Feng Xiaofang. 2018. Dominant role of the ocean mixed layer depth in the increased proportion of intense typhoons during 1980–2015. Earth’s Future, 6(11): 1518–1527. doi: 10.1029/2018EF000973
    [62]
    Yablonsky R M, Ginis I. 2012. Impact of a warm ocean eddy’s circulation on hurricane-induced sea surface cooling with implications for hurricane intensity. Monthly Weather Review, 141(3): 997–1021
    [63]
    Yan Youfang, Li Li, Wang Chunzai. 2017. The effects of oceanic barrier layer on the upper ocean response to tropical cyclones. Journal of Geophysical Research: Oceans, 122(6): 4829–4844. doi: 10.1002/2017JC012694
    [64]
    Yang Guang, Wang Fan, Li Yuanlong, et al. 2013. Mesoscale eddies in the northwestern subtropical Pacific Ocean: statistical characteristics and three-dimensional structures. Journal of Geophysical Research: Oceans, 118(4): 1906–1925. doi: 10.1002/jgrc.20164
    [65]
    Yang Guang, Yu Weidong, Yuan Yeli, et al. 2015. Characteristics, vertical structures, and heat/salt transports of mesoscale eddies in the southeastern tropical Indian Ocean. Journal of Geophysical Research: Oceans, 120(10): 6733–6750. doi: 10.1002/2015JC011130
    [66]
    Zhang Zhengguang, Zhang Yu, Wang Wei, et al. 2013. Universal structure of mesoscale eddies in the ocean. Geophysical Research Letters, 40(14): 3677–3681. doi: 10.1002/grl.50736
    [67]
    Zhang Zhengguang, Wang Wei, Qiu Bo. 2014. Oceanic mass transport by mesoscale eddies. Science, 345(6194): 322–324. doi: 10.1126/science.1252418
    [68]
    Zhao Xiaohui, Chan J C L. 2017. Changes in tropical cyclone intensity with translation speed and mixed-layer depth: idealized WRF-ROMS coupled model simulations. Quarterly Journal of the Royal Meteorological Society, 143(702): 152–163. doi: 10.1002/qj.2905
    [69]
    Zweng M M, Reagan J R, Seidov D, et al. 2018. World Ocean Atlas 2018, Volume 2: Salinity. NOAA Atlas NESDIS 82. US: NOAA, 1–50
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (332) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return