Volume 39 Issue 9
Sep.  2020
Turn off MathJax
Article Contents
Liming Ye, Xiaoguo Yu, Weiyan Zhang, Rong Wang. Ice sheet controls on fine-grained deposition at the southern Mendeleev Ridge since the penultimate interglacial[J]. Acta Oceanologica Sinica, 2020, 39(9): 86-95. doi: 10.1007/s13131-020-1649-2
Citation: Liming Ye, Xiaoguo Yu, Weiyan Zhang, Rong Wang. Ice sheet controls on fine-grained deposition at the southern Mendeleev Ridge since the penultimate interglacial[J]. Acta Oceanologica Sinica, 2020, 39(9): 86-95. doi: 10.1007/s13131-020-1649-2

Ice sheet controls on fine-grained deposition at the southern Mendeleev Ridge since the penultimate interglacial

doi: 10.1007/s13131-020-1649-2
Funds:  The Chinese Special Project on Arctic Ocean Marine Geology Investigation under contract No. CHINARE 2012-2017-03-02; the National Programme on Global Change and Air-Sea Interaction under contract No. GASI-GEOGE-03; the National Natural Science Foundation of China under contract No. 41106048; the Scientific Research Foundation of the Second Institute of Oceanography, Ministry of Natural Resources, under contract No. 17010261.
More Information
  • Corresponding author: E-mail: lmye@sio.org.cn
  • Received Date: 2019-10-15
  • Accepted Date: 2019-12-11
  • Available Online: 2020-12-28
  • Publish Date: 2020-09-25
  • Clay minerals deposited at the southern Mendeleev Ridge in the Arctic Ocean have a unique provenance, which can be used to reconstruct changes in the local sedimentary environment. We show that sediments in core ARC7-E23 record high-frequency changes in clay minerals since the penultimate interglacial. The clay minerals, grain size, and ice-rafted debris indicate the extent of the East Siberia Ice Sheet (ESIS). During the glacial periods of Marine Isotope Stage 2 (MIS2) and MIS4, the southern Mendeleev Ridge was likely covered by an ESIS-extended ice shelf, blocking almost all sediment input from the Canadian Arctic and Laptev Sea, but allowing transport of fine-grained sediments from the East Siberian and Chukchi Sea shelves. After ESIS retreat, the Beaufort Gyre and Transpolar Drift became the primary transport mechanism for the distally sourced sediments. Climate conditions in MIS3 enhanced both the oceanic circulation and sediment transport.
  • loading
  • [1]
    Adler R E, Polyak L, Ortiz J D, et al. 2009. Sediment record from the western Arctic Ocean with an improved Late Quaternary age resolution: HOTRAX core HLY0503-8JPC, Mendeleev Ridge. Global and Planetary Change, 68(1–2): 18–29. doi: 10.1016/j.gloplacha.2009.03.026
    [2]
    Ashmore D W, Bingham R G. 2014. Antarctic subglacial hydrology: current knowledge and future challenges. Antarctic Science, 26(6): 758–773. doi: 10.1017/S0954102014000546
    [3]
    Bazhenova E, Fagel N, Stein R. 2017. North American origin of “pink-white” layers at the Mendeleev Ridge (Arctic Ocean): New insights from lead and neodymium isotope composition of detrital sediment component. Marine Geology, 386: 44–55. doi: 10.1016/j.margeo.2017.01.010
    [4]
    Berger W H, Jansen E. 1994. Mid-pleistocene climate shift-the Nansen connection. In: Johannessen O M, Muench R D, Overland J E, eds. The Polar Oceans and Their Role in Shaping the Global Environment. Washington: American Geophysical Union, 85: 295-311, doi: 10.1029/GM085p0295
    [5]
    Biscaye P E. 1965. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin, 76(7): 803–832. doi: 10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2
    [6]
    Bischof J F, Darby D A. 1997. Mid- to Late Pleistocene ice drift in the western Arctic Ocean: evidence for a different circulation in the past. Science, 277: 74–78. doi: 10.1126/science.277.5322.74
    [7]
    Blott S J, Pye K. 2001. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms, 26(11): 1237–1248. doi: 10.1002/esp.261
    [8]
    Bond G C, Showers W J, Cheseby M, et al. 1997. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science, 278(5341): 1257–1266. doi: 10.1126/science.278.5341.1257
    [9]
    Clark C D. 1993. Mega-scale glacial lineations and cross-cutting ice-flow landforms. Earth Surface Processes and Landforms, 18(1): 1–29. doi: 10.1002/esp.3290180102
    [10]
    Clark P U, Alley R B, Pollard D. 1999. Northern Hemisphere Ice-sheet influences on global climate change. Science, 286(5442): 1104–1111. doi: 10.1126/science.286.5442.1104
    [11]
    Clark D L, Hanson A. 1983. Central Arctic Ocean sediment texture: a key to ice transport mechanisms. In: Molnia B F, ed. Glacial-Marine Sedimentation. Boston: Springer, 301–330
    [12]
    Clark P U, Marshall S J, Clarke G K C, et al. 2001. Freshwater forcing of abrupt climate change during the last glaciation. Science, 293(5528): 283–287. doi: 10.1126/science.1062517
    [13]
    Clark D L, Whitman R R, Morgan K A, et al. 1980. Stratigraphy and Glacial-Marine Sediments of the Amerasian Basin, Central Arctic Ocean. Geological Society of America, 52–63. doi: 10.1130/SPE181-p1
    [14]
    Coachman L K, Barnes C A. 1963. The movement of Atlantic water in the Arctic Ocean. Arctic, 16(1): 1–80. doi: 10.14430/arctic3517
    [15]
    Colleoni F, Kirchner N, Niessen F, et al. 2016. An East Siberian ice shelf during the Late Pleistocene glaciations: Numerical reconstructions. Quaternary Science Reviews, 147: 148–163. doi: 10.1016/j.quascirev.2015.12.023
    [16]
    Condron A, Winsor P. 2012. Meltwater routing and the Younger Dryas. Proceedings of the National Academy of Sciences of the United States of America, 109(49): 19928–19933. doi: 10.1073/pnas.1207381109
    [17]
    Darby D A, Myers W B, Jakobsson M, et al. 2011. Modern dirty sea ice characteristics and sources: the role of anchor ice. Journal of Geophysical Research: Oceans, 116(C9): C09008. doi: 10.1029/2010JC006675
    [18]
    Darby D A, Ortiz J, Polyak L, et al. 2009. The role of currents and sea ice in both slowly deposited central Arctic and rapidly deposited Chukchi-Alaskan margin sediments. Global and Planetary Change, 68(1–2): 58–72. doi: 10.1016/j.gloplacha.2009.02.007
    [19]
    Deschamps C E, Montero-Serrano J C, St-Onge G. 2018. Sediment Provenance Changes in the Western Arctic Ocean in Response to Ice Rafting, Sea Level, and Oceanic Circulation Variations Since the Last Deglaciation. Geochemistry Geophysics Geosystems: doi: 10.1029/2017GC007411
    [20]
    Dietze E, Hartmann K, Diekmann B, et al. 2012. An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China. Sedimentary Geology, 243–244: 169–180. doi: 10.1016/j.sedgeo.2011.09.014
    [21]
    Dipre G R, Polyak L, Kuznetsov A B, et al. 2018. Plio-Pleistocene sedimentary record from the Northwind Ridge: new insights into paleoclimatic evolution of the western Arctic Ocean for the last 5 Ma. Arktos, 4: 24. doi: 10.1007/s41063-018-0054-y
    [22]
    Dong Lisen, Liu Yanguang, Shi Xuefa, et al. 2017. Sedimentary record from the Canada Basin, Arctic Ocean: implications for late to middle Pleistocene glacial history. Climate of the Past, 13(5): 511–531. doi: 10.5194/cp-13-511-2017
    [23]
    Dove D, Polyak L, Coakley B. 2014. Widespread, multi-source glacial erosion on the Chukchi margin, Arctic Ocean. Quaternary Science Reviews, 92: 112–122. doi: 10.1016/j.quascirev.2013.07.016
    [24]
    Ehlers J, Gibbard P L. 2007. The extent and chronology of Cenozoic global glaciation. Quaternary International, 164–165: 6–20. doi: 10.1016/j.quaint.2006.10.008
    [25]
    England J H, Furze M F A, Doupé J P. 2009. Revision of the NW Laurentide Ice Sheet: implications for paleoclimate, the northeast extremity of Beringia, and Arctic Ocean sedimentation. Quaternary Science Reviews, 28(17–18): 1573–1596. doi: 10.1016/j.quascirev.2009.04.006
    [26]
    Funder S, Goosse H, Jepsen H, et al. 2011. A 10,000-year record of Arctic Ocean sea-ice variability—view from the beach. Science, 333(6043): 747–750. doi: 10.1126/science.1202760
    [27]
    Hegewald A, Jokat W. 2013. Tectonic and sedimentary structures in the northern Chukchi Region, Arctic Ocean. Journal of Geophysics Research: Solid Earth, 118(7): 3285–3296. doi: 10.1002/jgrb.50282
    [28]
    Jakobsson M, Andreassen K, Bjarnadóttir L R, et al. 2014. Arctic Ocean glacial history. Quaternary Science Reviews, 92: 40–67. doi: 10.1016/j.quascirev.2013.07.033
    [29]
    Jakobsson M, Backman J, Murray A, et al. 2003. Optically Stimulated Luminescence dating supports central Arctic Ocean cm‐scale sedimentation rates. Geochemistry, Geophysics, Geosystems, 4(2): 1016. doi: 10.1029/2002GC000423
    [30]
    Jakobsson M, Gardner J V, Vogt P R, et al. 2005. Multibeam bathymetric and sediment profiler evidence for ice grounding on the Chukchi Borderland, Arctic Ocean. Quaternary Research, 63(2): 150–160. doi: 10.1016/j.yqres.2004.12.004
    [31]
    Jakobsson M, Løvlie R, Al-Hanbali H, et al. 2000. Manganese and color cycles in Arctic Ocean sediments constrain Pleistocene chronology. Geology, 28(1): 23–26. doi: 10.1130/0091-7613(2000)28<23:MACCIA>2.0.CO;2
    [32]
    Jakobsson M, Nilsson J, Anderson L, et al. 2016. Evidence for an ice shelf covering the central Arctic Ocean during the penultimate glaciation. Nature Communications, 7: 10365. doi: 10.1038/ncomms10365
    [33]
    Jakobsson M, Nilsson J, O’Regan M, et al. 2010. An Arctic Ocean ice shelf during MIS 6 constrained by new geophysical and geological data. Quaternary Science Reviews, 29(25–26): 3505–3517. doi: 10.1016/j.quascirev.2010.03.015
    [34]
    Liu Zhifei, Colin C, Li Xiajing, et al. 2010. Clay mineral distribution in surface sediments of the northeastern South China Sea and surrounding fluvial drainage basins: source and transport. Marine Geology, 277(1–4): 48–60. doi: 10.1016/j.margeo.2010.08.010
    [35]
    Löwemark L, Chen H F, Yang T N, et al. 2011. Normalizing XRF-scanner data: A cautionary note on the interpretation of high-resolution records from organic-rich lakes. Journal of Asian Earth Sciences, 40(6): 1250–1256. doi: 10.1016/j.jseaes.2010.06.002
    [36]
    Löwemark L, März C, O’Regan M, et al. 2014. Arctic Ocean Mn-stratigraphy: genesis, synthesis and inter-basin correlation. Quaternary Science Reviews, 92: 97–111. doi: 10.1016/j.quascirev.2013.11.018
    [37]
    Löwemark L, O'Regan M, Hanebuth T J J, et al. 2012. Late Quaternary spatial and temporal variability in Arctic deep-sea bioturbation and its relation to Mn cycles. Palaeogeography, Palaeoclimatology, Palaeoecology, 365–366: 192–208. doi: 10.1016/j.palaeo.2012.09.028
    [38]
    Macdonald R W, Gobeil C. 2012. Manganese sources and sinks in the Arctic Ocean with reference to periodic enrichments in basin sediments. Aquatic Geochemistry, 18(6): 565–591. doi: 10.1007/s10498-011-9149-9
    [39]
    Mangerud J, Jakobsson M, Alexanderson H, et al. 2004. Ice-dammed lakes and rerouting of the drainage of northern Eurasia during the Last Glaciation. Quaternary Science Reviews, 23(11–13): 1313–1332. doi: 10.1016/j.quascirev.2003.12.009
    [40]
    März C, Stratmann A, Matthiessen J, et al. 2011. Manganese-rich brown layers in Arctic Ocean sediments: Composition, formation mechanisms, and diagenetic overprint. Geochimica et Cosmochimica Acta, 75(23): 7668–7687. doi: 10.1016/j.gca.2011.09.046
    [41]
    Niessen F, Hong J K, Hegewald A, et al. 2013. Repeated Pleistocene glaciation of the East Siberian continental margin. Nature Geoscience, 6(10): 842–846. doi: 10.1038/ngeo1904
    [42]
    Nürnberg D, Wollenburg I, Dethleff D, et al. 1994. Sediments in Arctic sea ice: implications for entrainment, transport and release. Marine Geology, 119(3–4): 185–214. doi: 10.1016/0025-3227(94)90181-3
    [43]
    Polyak L, Best K M, Crawford K A, et al. 2013. Quaternary history of sea ice in the western Arctic Ocean based on foraminifera. Quaternary Science Reviews, 79: 145–156. doi: 10.1016/j.quascirev.2012.12.018
    [44]
    Polyak L, Bischof J F, Ortiz J D, et al. 2009. Late Quaternary stratigraphy and sedimentation patterns in the western Arctic Ocean. Global and Planetary Change, 68(1–2): 5–17. doi: 10.1016/j.gloplacha.2009.03.014
    [45]
    Polyak L, Curry W B, Darby D A, et al. 2004. Contrasting glacial/interglacial regimes in the western Arctic Ocean as exemplified by a sedimentary record from the Mendeleev Ridge. Palaeogeography, Palaeoclimatology, Palaeoecology, 203(1–2): 73–93. doi: 10.1016/S0031-0182(03)00661-8
    [46]
    Polyak L, Darby D A, Bischof J F, et al. 2007. Stratigraphic constraints on late Pleistocene glacial erosion and deglaciation of the Chukchi margin, Arctic Ocean. Quaternary Research, 67(2): 234–245. doi: 10.1016/j.yqres.2006.08.001
    [47]
    Polyak L, Edwards M H, Coakley B J, et al. 2001. Ice shelves in the Pleistocene Arctic Ocean inferred from glaciogenic deep-sea bedforms. Nature, 410(6827): 453–457. doi: 10.1038/35068536
    [48]
    Polyak L, Jakobsson M. 2011. Quaternary sedimentation in the Arctic Ocean: Recent advances and further challenges. Oceanography, 24(3): 52–64. doi: 10.5670/oceanog.2011.55
    [49]
    Reimnitz E, McCormick M, Bischof J, et al. 1998. Comparing sea-ice sediment load with Beaufort Sea shelf deposits: is entrainment selective?. Journal of Sedimentary Research, 68(5): 777–787. doi: 10.2110/jsr.68.777
    [50]
    Siddall M, Rohling E J, Almogi-Labin A, et al. 2003. Sea-level fluctuations during the last glacial cycle. Nature, 423(6942): 853–858. doi: 10.1038/nature01690
    [51]
    Spielhagen R F, Baumann K H, Erlenkeuser H, et al. 2004. Arctic Ocean deep-sea record of northern Eurasian ice sheet history. Quaternary Science Reviews, 23(11–13): 1455–1483. doi: 10.1016/j.quascirev.2003.12.015
    [52]
    Spratt R M, Lisiecki L E. 2016. A late Pleistocene sea level stack. Climate of the Past, 12(4): 1079–1092. doi: 10.5194/cp-12-1079-2016
    [53]
    Steele M, Ermold W, Zhang Jinlun. 2008. Arctic Ocean surface warming trends over the past 100 years. Geophysical Research Letters, 35(2): L02614. doi: 10.1029/2007GL031651
    [54]
    Stein R. 2008. Arctic Ocean Sediments: Processes, Proxies, and Paleoenvironment. Amsterdam: Elsevier, 251–302
    [55]
    Stein R, Fahl K, Gierz P, et al. 2017. Arctic Ocean Sea Ice cover during the penultimate glacial and the last interglacial. Nature Communications, 8(1): 373. doi: 10.1038/s41467-017-00552-1
    [56]
    Stein R, Matthiessen J, Niessen F, et al. 2010. Towards a better (litho-) stratigraphy and reconstruction of Quaternary paleoenvironment in the Amerasian Basin (Arctic Ocean). Polarforschung, 79(2): 97–121
    [57]
    Swärd H, O’Regan M, Pearce C, et al. 2018. Sedimentary proxies for Pacific water inflow through the Herald Canyon, western Arctic Ocean. Arktos, 4(1): 19. doi: 10.1007/s41063-018-0055-x
    [58]
    Talley L D, Pickard G L, Emery W J, et al. 2011. Descriptive Physical Oceanography: An Introduction. 6th ed. London: Academic Press, 401–436
    [59]
    Wahsner M, Müller C, Stein R, et al. 1999. Clay-mineral distribution in surface sediments of the Eurasian Arctic Ocean and continental margin as indicator for source areas and transport pathways—a synthesis. Boreas, 28(1): 215–233. doi: 10.1111/j.1502-3885.1999.tb00216.x
    [60]
    Wang Rujian, Xiao Wenshen, März C, et al. 2013. Late Quaternary paleoenvironmental changes revealed by multi-proxy records from the Chukchi Abyssal Plain, western Arctic Ocean. Global and Planetary Change, 108: 100–118. doi: 10.1016/j.gloplacha.2013.05.017
    [61]
    Yamamoto M, Nam S I, Polyak L, et al. 2017. Holocene dynamics in the Bering Strait inflow to the Arctic and the Beaufort Gyre circulation based on sedimentary records from the Chukchi Sea. Climate of the Past, 13(9): 1111–1127. doi: 10.5194/cp-13-1111-2017
    [62]
    Ye Liming, März C, Polyak L, et al. 2019. Dynamics of manganese and cerium enrichments in Arctic Ocean sediments: a case study from the Alpha Ridge. Frontiers in Earth Science, 6: 236. doi: 10.3389/feart.2018.00236
    [63]
    Zachos I J C, Pagani M C, Sloan L, et al. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292(5517): 686–693. doi: 10.1126/science.1059412
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (183) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return