Citation: | Xiaowen Zhang, Xiaoyuan Chi, Yitao Wang, Jian Zhang, Yan Zhang, Dong Xu, Xiao Fan, Chengwei Liang, Naihao Ye. Characterization of a broad substrates specificity acyl-CoA: diacylglycerol acyltransferase 1 from the green tide alga Ulva prolifera[J]. Acta Oceanologica Sinica, 2020, 39(10): 42-49. doi: 10.1007/s13131-020-1659-0 |
[1] |
Aaronson S. 1973. Effect of incubation temperature on the macromolecular and lipid content of the phytoflagellate Ochromonas danica. Journal of Phycology, 9(1): 111–113. doi: 10.1111/j.0022-3646.1973.00111.x
|
[2] |
Allen J W, DiRusso C C, Black P N. 2015. Triacylglycerol synthesis during nitrogen stress involves the prokaryotic lipid synthesis pathway and acyl chain remodeling in the microalgae Coccomyxa subellipsoidea. Algal Research, 10: 110–120. doi: 10.1016/j.algal.2015.04.019
|
[3] |
Andrianov V, Borisjuk N, Pogrebnyak N, et al. 2010. Tobacco as a production platform for biofuel: overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass. Plant Biotechnology Journal, 8(3): 277–287. doi: 10.1111/j.1467-7652.2009.00458.x
|
[4] |
Arora N, Pienkos P T, Pruthi V, et al. 2018. Leveraging algal omics to reveal potential targets for augmenting TAG accumulation. Biotechnology Advances, 36(4): 1274–1292. doi: 10.1016/j.biotechadv.2018.04.005
|
[5] |
Banilas G, Karampelias M, Makariti I, et al. 2011. The olive DGAT2 gene is developmentally regulated and shares overlapping but distinct expression patterns with DGAT1. Journal of Experimental Botany, 62(2): 521–532. doi: 10.1093/jxb/erq286
|
[6] |
Berkey R, Bendigeri D, Xiao S Y. 2012. Sphingolipids and plant defense/disease: the “death” connection and beyond. Frontiers in Plant Science, 3: 68
|
[7] |
Boussiba S, Vonshak A, Cohen Z, et al. 1987. Lipid and biomass production by the halotolerant microalga Nannochloropsis salina. Biomass, 12(1): 37–47. doi: 10.1016/0144-4565(87)90006-0
|
[8] |
Brodie J, Chan C X, De Clerck O, et al. 2017. The algal revolution. Trends in Plant Science, 22(8): 726–738. doi: 10.1016/j.tplants.2017.05.005
|
[9] |
Brown M R, Dunstan G A, Norwood S J, et al. 1996. Effects of harvest stage and light on the biochemical composition of the diatom Thalassiosira pseudonana. Journal of Phycology, 32(1): 64–73. doi: 10.1111/j.0022-3646.1996.00064.x
|
[10] |
Browse J, McCourt P J, Somerville C R. 1986. Fatty acid composition of leaf lipids determined after combined digestion and fatty acid methyl ester formation from fresh tissue. Analytical Biochemistry, 152(1): 141–145. doi: 10.1016/0003-2697(86)90132-6
|
[11] |
Burgal J, Shockey J, Lu C F, et al. 2008. Metabolic engineering of hydroxy fatty acid production in plants: RcDGAT2 drives dramatic increases in ricinoleate levels in seed oil. Plant Biotechnology Journal, 6(8): 819–831. doi: 10.1111/j.1467-7652.2008.00361.x
|
[12] |
Callow J A, Callow M E. 2006a. Biofilms. In: Fusetani N, Clare A S, eds. Antifouling Compounds. Berlin, Heidelberg: Springer, 141–169
|
[13] |
Callow J A, Callow M E. 2006b. The Ulva spore adhesive system. In: Smith A M, Callow J A, eds. Biological Adhesives. Berlin, Heidelberg: Springer, 63–78
|
[14] |
Cao Heping. 2011. Structure-function analysis of diacylglycerol acyltransferase sequences from 70 organisms. BMC Research Notes, 4: 249. doi: 10.1186/1756-0500-4-249
|
[15] |
Chen J E, Smith A G. 2012. A look at diacylglycerol acyltransferases (DGATs) in algae. Journal of Biotechnology, 162(1): 28–39. doi: 10.1016/j.jbiotec.2012.05.009
|
[16] |
Chen Xue, Snyder C L, Truksa M, et al. 2011. sn-Glycerol-3-phosphate acyltransferases in plants. Plant Signaling and Behavior, 6(11): 1695–1699. doi: 10.4161/psb.6.11.17777
|
[17] |
Chen Chunxiu, Sun Zheng, Cao Haisheng, et al. 2015. Identification and characterization of three genes encoding acyl-CoA: diacylglycerol acyltransferase (DGAT) from the microalga Myrmecia incisa Reisigl. Algal Research, 12: 280–288. doi: 10.1016/j.algal.2015.09.007
|
[18] |
Cosse A, Leblanc C, Potin P. 2007. Dynamic defense of marine macroalgae against pathogens: from early activated to gene-regulated responses. Advances in Botanical Research, 46: 221–266. doi: 10.1016/S0065-2296(07)46006-2
|
[19] |
Dong Meitao, Zhang Xiaowen, Chi Xiaoyan, et al. 2012. The validity of a reference gene is highly dependent on the experimental conditions in green alga Ulva linza. Current Genetics, 58(1): 13–20. doi: 10.1007/s00294-011-0361-3
|
[20] |
Goncalves E C, Johnson J V, Rathinasabapathi B. 2013. Conversion of membrane lipid acyl groups to triacylglycerol and formation of lipid bodies upon nitrogen starvation in biofuel green algae Chlorella UTEX29. Planta, 238(5): 895–906. doi: 10.1007/s00425-013-1946-5
|
[21] |
Gong Yangmin, Zhang Junping, Guo Xiaojing, et al. 2013. Identification and characterization of PtDGAT2B, an acyltransferase of the DGAT2 acyl-coenzyme A: diacylglycerol acyltransferase family in the diatom Phaeodactylum tricornutum. FEBS letters, 587(5): 481–487. doi: 10.1016/j.febslet.2013.01.015
|
[22] |
Guihéneuf F, Leu S, Zarka A, et al. 2011. Cloning and molecular characterization of a novel acyl-CoA: diacylglycerol acyltransferase 1-like gene (PtDGAT1) from the diatom Phaeodactylum tricornutum. The FEBS Journal, 278(19): 3651–3666. doi: 10.1111/j.1742-4658.2011.08284.x
|
[23] |
Hemme D, Veyel D, Mühlhaus T, et al. 2014. Systems-wide analysis of acclimation responses to long-term heat stress and recovery in the photosynthetic model organism Chlamydomonas reinhardtii. The Plant Cell, 26: 4270–4297. doi: 10.1105/tpc.114.130997
|
[24] |
Hou Quancan, Ufer G, Bartels D. 2016. Lipid signalling in plant responses to abiotic stress. Plant, Cell & Environment, 39(5): 1029–1048
|
[25] |
Hu Qiang, Sommerfeld M, Jarvis E, et al. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant Journal, 54(4): 621–639. doi: 10.1111/j.1365-313X.2008.03492.x
|
[26] |
Khotimchenko S V, Yakovleva I M. 2005. Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance. Phytochemistry, 66(1): 73–79. doi: 10.1016/j.phytochem.2004.10.024
|
[27] |
Kim H, Park J H, Kim D J, et al. 2016. Functional analysis of diacylglycerol acyltransferase1 genes from Camelina sativa and effects of CsDGAT1B overexpression on seed mass and storage oil content in C. sativa. Plant Biotechnology Reports, 10(3): 141–153. doi: 10.1007/s11816-016-0394-7
|
[28] |
Kroon J T M, Wei Wenxue, Simon W J, et al. 2006. Identification and functional expression of a type 2 acyl-CoA: diacylglycerol acyltransferase (DGAT2) in developing castor bean seeds which has high homology to the major triglyceride biosynthetic enzyme of fungi and animals. Phytochemistry, 67(23): 2541–2549. doi: 10.1016/j.phytochem.2006.09.020
|
[29] |
Kumar S, Stecher G, Tamura K. 2016. Mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7): 1870–1874. doi: 10.1093/molbev/msw054
|
[30] |
La Russa M, Bogen C, Uhmeyer A, et al. 2012. Functional analysis of three type-2 DGAT homologue genes for triacylglycerol production in the green microalga Chlamydomonas reinhardtii. Journal of Biotechnology, 162(1): 13–20. doi: 10.1016/j.jbiotec.2012.04.006
|
[31] |
Li Dawei, Cen Shiying, Liu Yuhong, et al. 2016. A type 2 diacylglycerol acyltransferase accelerates the triacylglycerol biosynthesis in heterokont oleaginous microalga Nannochloropsis oceanica. Journal of Biotechnology, 229: 65–71. doi: 10.1016/j.jbiotec.2016.05.005
|
[32] |
Li Runzhi, Yu Keshun, Hildebrand D F. 2010. DGAT1, DGAT2 and PDAT expression in seeds and other tissues of epoxy and hydroxy fatty acid accumulating plants. Lipids, 45(2): 145–157. doi: 10.1007/s11745-010-3385-4
|
[33] |
Mao Xuemei, Wu Tao, Kou Yaping, et al. 2019. Characterization of type I and type II diacylglycerol acyltransferases from the emerging model alga Chlorella zofingiensis reveals their functional complementarity and engineering potential. Biotechnology for Biofuels, 12(1): 28. doi: 10.1186/s13068-019-1366-2
|
[34] |
Ma Xiaonan, Liu Jin, Liu Bin, et al. 2016. Physiological and biochemical changes reveal stress-associated photosynthetic carbon partitioning into triacylglycerol in the oleaginous marine alga Nannochloropsis oculata. Algal Research, 16: 28–35. doi: 10.1016/j.algal.2016.03.005
|
[35] |
Meijer H J G, van Himbergen J A J, Musgrave A, et al. 2017. Acclimation to salt modifies the activation of several osmotic stress-activated lipid signalling pathways in Chlamydomonas. Phytochemistry, 135: 64–72. doi: 10.1016/j.phytochem.2016.12.014
|
[36] |
Miller R, Wu Guangxi, Deshpande R R, et al. 2010. Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism. Plant Physiology, 154: 1737–1752. doi: 10.1104/pp.110.165159
|
[37] |
Misra A, Khan K, Niranjan A, et al. 2013. Over-expression of JcDGAT1 from Jatropha curcas increases seed oil levels and alters oil quality in transgenic Arabidopsis thaliana. Phytochemistry, 96: 37–45. doi: 10.1016/j.phytochem.2013.09.020
|
[38] |
Mou Shanli, Xu Dong, Ye Naihao, et al. 2012. Rapid estimation of lipid content in an Antarctic ice alga (Chlamydomonas sp.) using the lipophilic fluorescent dye BODIPY505/515. Journal of Applied Phycology, 24(5): 1169–1176. doi: 10.1007/s10811-011-9746-4
|
[39] |
Niu Yingfang, Zhang Minghan, Li Dawei, et al. 2013. Improvement of neutral lipid and polyunsaturated fatty acid biosynthesis by overexpressing a type 2 diacylglycerol acyltransferase in marine diatom Phaeodactylum tricornutum. Marine Drugs, 11(11): 4558–4569. doi: 10.3390/md11114558
|
[40] |
Ohlrogge J, Browse J. 1995. Lipid biosynthesis. The Plant Cell, 7: 957–970
|
[41] |
Rani S H, Krishna T H A, Saha S, et al. 2010. Defective in cuticular ridges (DCR) of Arabidopsis thaliana, a gene associated with surface cutin formation, encodes a soluble diacylglycerol acyltransferase. Journal of Biological Chemistry, 285: 38337–38347. doi: 10.1074/jbc.M110.133116
|
[42] |
Roesler K, Shen Bo, Bermudez E, et al. 2016. An improved variant of soybean type 1 diacylglycerol acyltransferase increases the oil content and decreases the soluble carbohydrate content of soybeans. Plant Physiology, 171(2): 878–893
|
[43] |
Savadi S, Naresh V, Kumar V, et al. 2016. Seed-specific overexpression of Arabidopsis DGAT1 in Indian mustard (Brassica juncea) increases seed oil content and seed weight. Botany, 94(3): 177–184. doi: 10.1139/cjb-2015-0218
|
[44] |
Shockey J M, Gidda S K, Chapital D C, et al. 2006. Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum. The Plant Cell, 18: 2294–2313. doi: 10.1105/tpc.106.043695
|
[45] |
Siaut M, Cuiné S, Cagnon C, et al. 2011. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnology, 11: 7. doi: 10.1186/1472-6750-11-7
|
[46] |
Smetacek V, Zingone A. 2013. Green and golden seaweed tides on the rise. Nature, 504(7478): 84–88. doi: 10.1038/nature12860
|
[47] |
Takagi M, Karseno, Yoshida T. 2006. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. Journal of Bioscience and Bioengineering, 101(3): 223–226. doi: 10.1263/jbb.101.223
|
[48] |
Taylor D C, Zhang Yan, Kumar A, et al. 2009. Molecular modification of triacylglycerol accumulation by over-expression of DGAT1 to produce canola with increased seed oil content under field conditions. Botany, 87(6): 533–543. doi: 10.1139/B08-101
|
[49] |
Úbeda-Mínguez P, García-Maroto F, Alonso D L, et al. 2017. Heterologous expression of DGAT genes in the marine microalga Tetraselmis chui leads to an increase in TAG content. Journal of Applied Phycology, 29(4): 1913–1926. doi: 10.1007/s10811-017-1103-9
|
[50] |
Vesty E F, Kessler R W, Wichard T, et al. 2015. Regulation of gametogenesis and zoosporogenesis in Ulva linza (Chlorophyta): comparison with Ulva mutabilis and potential for laboratory culture. Frontiers in Plant Science, 6: 15
|
[51] |
Wagner M, Hoppe K, Czabany T, et al. 2010. Identification and characterization of an acyl-CoA: diacylglycerol acyltransferase 2 (DGAT2) gene from the microalga O. tauri. Plant Physiology & Biochemistry, 48(6): 407–416
|
[52] |
Wang Zhikun, Yang Mingming, Sun Yingnan, et al. 2019. Overexpressing Sesamum indicum L.’s DGAT1 increases the seed oil content of transgenic soybean. Molecular Breeding, 39(7): 101. doi: 10.1007/s11032-019-1016-1
|
[53] |
Weselake R J, Shah S, Tang Mingguo, et al. 2008. Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content. Journal of Experimental Botany, 59(13): 3543–3549. doi: 10.1093/jxb/ern206
|
[54] |
Xu Jingyu, Francis T, Mietkiewska E, et al. 2008. Cloning and characterization of an acyl-CoA-dependent diacylglycerol acyltransferase 1 (DGAT1) gene from Tropaeolum majus, and a study of the functional motifs of the DGAT protein using site-directed mutagenesis to modify enzyme activity and oil content. Plant Biotechnology Journal, 6(8): 799–818. doi: 10.1111/j.1467-7652.2008.00358.x
|
[55] |
Yen C L E, Stone S J, Koliwad S, et al. 2008. Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. Journal of Lipid Research, 49: 2283–2301. doi: 10.1194/jlr.R800018-JLR200
|
[56] |
Zhang Yongyu, He Peimin, Li Hongmei, et al. 2019. Ulva prolifera green-tide outbreaks and their environmental impact in the Yellow Sea, China. National Science Review, 6(4): 825–838. doi: 10.1093/nsr/nwz026
|
[57] |
Zhao Jian. 2015. Phospholipase D and phosphatidic acid in plant defence response: from protein-protein and lipid-protein interactions to hormone signalling. Journal of Experimental Botany, 66(7): 1721–1736. doi: 10.1093/jxb/eru540
|
[58] |
Zheng Peizhong, Allen W B, Roesler K, et al. 2008. A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nature Genetics, 40(3): 367–372. doi: 10.1038/ng.85
|