Volume 39 Issue 10
Oct.  2020
Turn off MathJax
Article Contents
Jie Zhang, Ling Chen, Zihua Cheng, Limei Tang. Geological characteristics of the Nankai Trough subduction zone and their tectonic significances[J]. Acta Oceanologica Sinica, 2020, 39(10): 81-95. doi: 10.1007/s13131-020-1663-4
Citation: Jie Zhang, Ling Chen, Zihua Cheng, Limei Tang. Geological characteristics of the Nankai Trough subduction zone and their tectonic significances[J]. Acta Oceanologica Sinica, 2020, 39(10): 81-95. doi: 10.1007/s13131-020-1663-4

Geological characteristics of the Nankai Trough subduction zone and their tectonic significances

doi: 10.1007/s13131-020-1663-4
Funds:  The Open Research Fund of the Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, MNR under contract No. KLMMR-2017-B-01; the National Program on Global Change and Air–Sea Interaction, SOA under contract No. GASI-GEOGE-01; the Scientific Research Fund of the Second Institute of Oceanography, MNR under contract Nos JG1903 and QNYC1901; the National Natural Science Foundation of China under contract Nos 41706044, 41706041, 41890811 and 91858214; the Open Research Fund of the Key Laboratory of Ocean and Marginal Sea Geology, Chinese Academy of Sciences under contract No. OMG2019-04.
More Information
  • Corresponding author: E-mail: chenling@sio.org.cn
  • Received Date: 2020-01-06
  • Accepted Date: 2020-03-27
  • Available Online: 2020-12-28
  • Publish Date: 2020-10-25
  • The Nankai Trough subduction zone is a typical subduction system characterized by subduction of multiple geological units of the Philippine Sea Plate (the Kyushu-Palau Ridge, the Shikoku Basin, the Kinan Seamount Chain, and the Izu-Bonin Arc) beneath the Eurasian Plate in the southwest of Japan. This study presents a geophysical and geochemical analysis of the Nankai Trough subduction zone in order to determine the features and subduction effects of each geological unit. The results show that the Nankai Trough is characterized by low-gravity anomalies (–20 mGal to –40 mGal) and high heat flow (60–200 mW/m2) in the middle part and low heat flow (20–80 mW/m2) in the western and eastern parts. The crust of the subducting plate is 5–20 km thick. The mantle composition of the subducting plate is progressively depleted from west to east. Subduction of aseismic ridges (e.g., the Kyushu-Palau Ridge, the Kinan Seamount Chain, and the Zenisu Ridge) is a common process that leads to a series of subduction effects at the Nankai Trough. Firstly, aseismic ridge or seamount chain subduction may deform the overriding plate, resulting in irregular concave topography along the front edge of the accretionary wedge. Secondly, it may have served as a seismic barrier inhibiting rupture propagation in the 1944 Mw 8.1 and 1946 Mw 8.3 earthquakes. In addition, subduction of the Kyushu-Palau Ridge and hot and young Shikoku Basin lithosphere may induce slab melting, resulting in adakitic magmatism and the provision of ore-forming metals for the formation of porphyry copper and gold deposits in the overriding Japan Arc. Based on comparisons of their geophysical and geochemical characteristics, we suggest that, although the Izu-Bonin Arc has already collided with the Japan Arc, the Kyushu-Palau Ridge, which represents a remnant arc of the Izu-Bonin Arc, is still at the subduction stage characterized by a single-vergence system and a topographic boundary with the Japan Arc.
  • loading
  • [1]
    Anders E, Grevesse N. 1989. Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta, 53(1): 197–214. doi: 10.1016/0016-7037(89)90286-x
    [2]
    Arai R, Iwasaki T, Sato H, et al. 2013. Crustal structure of the Izu collision zone in central Japan from seismic refraction data. Journal of Geophysical Research: Solid Earth, 118(12): 6258–6268. doi: 10.1002/2013JB010532
    [3]
    Bangs N L B, Gulick S P S, Shipley T H. 2006. Seamount subduction erosion in the nankai trough and its potential impact on the seismogenic zone. Geology, 34(8): 701–704. doi: 10.1130/G22451.1
    [4]
    Beaumont C, Ellis S, Hamilton J, et al. 1996. Mechanical model for subduction-collision tectonics of Alpine-type compressional orogens. Geology, 24(8): 675–678. doi: 10.1130/0091-7613(1996)024<0675:MMFSCT>2.3.CO;2
    [5]
    Berndt J, Koepke J, Holtz F. 2005. An experimental investigation of the influence of water and oxygen fugacity on differentiation of MORB at 200 MPa. Journal of Petrology, 46(1): 135–167. doi: 10.1093/petrology/egh066
    [6]
    Cao Lingmin, Wang Zhi, Wu Shiguo, et al. 2014. A new model of slab tear of the subducting Philippine Sea Plate associated with Kyushu–Palau Ridge subduction. Tectonophysics, 636: 158–169. doi: 10.1016/j.tecto.2014.08.012
    [7]
    Chen Ping, Zheng Yanpeng, Liu Baohua. 2014. Geophysical features of the Nankai Trough subduction zone and their dynamic significance. Marine Geology & Quaternary Geology (in Chinese), 34(6): 153–160
    [8]
    Cooke D R, Hollings P, Walshe J L. 2005. Giant porphyry deposits: characteristics, distribution, and tectonic controls. Economic Geology, 100(5): 801–818. doi: 10.2113/gsecongeo.100.5.801
    [9]
    Cosca M, Arculus R, Pearce J, et al. 1998. 40Ar/39Ar and K–Ar geochronological age constraints for the inception and early evolution of the Izu–Bonin–Mariana arc system. Island Arc, 7(3): 579–595. doi: 10.1111/j.1440-1738.1998.00211.x
    [10]
    Danyushevsky L V. 2001. The effect of small amounts of H2O on crystallisation of mid-ocean ridge and backarc basin magmas. Journal of Volcanology and Geothermal Research, 110(3–4): 265–280. doi: 10.1016/S0377-0273(01)00213-X
    [11]
    Dominguez S, Malavieille J, Lallemand S E. 2000. Deformation of accretionary wedges in response to seamount subduction: Insights from sandbox experiments. Tectonics, 19(1): 182–196. doi: 10.1029/1999TC900055
    [12]
    Freymuth H, Ivko B, Gill J B, et al. 2016. Thorium isotope evidence for melting of the mafic oceanic crust beneath the Izu arc. Geochimica et Cosmochimica Acta, 186: 49–70. doi: 10.1016/j.gca.2016.04.034
    [13]
    Fukuda S, Nakai S I, Niihori K, et al. 2008. 238U-230Th radioactive disequilibrium in the northern Izu arc: (230Th/232Th) in the sub-arc mantle. Geochemical Journal, 42(6): 461–479. doi: 10.2343/geochemj.42.461
    [14]
    GEBCO Compilation Group. 2020. GEBCO 2020 Grid, doi: 10.5285/a29c5465-b138-234d-e053-6c86abc040b9
    [15]
    Gutscher M A, Maury R, Eissen J P, et al. 2000. Can slab melting be caused by flat subduction?. Geology, 28(6): 535–538. doi: 10.1130/0091-7613(2000)28<535:CSMBCB>2.0.CO;2
    [16]
    Haraguchi S, Ishii T, Kimura J I, et al. 2003. Formation of tonalite from basaltic magma at the Komahashi-Daini Seamount, northern Kyushu-Palau Ridge in the Philippine Sea, and growth of Izu-Ogasawara (Bonin)-Mariana arc crust. Contributions to Mineralogy and Petrology, 145(2): 151–168. doi: 10.1007/s00410-002-0433-y
    [17]
    Haraguchi S, Ishii T, Kimura J I, et al. 2012. The early Miocene (~25 Ma) volcanism in the northern Kyushu-Palau Ridge, enriched mantle source injection during rifting prior to the Shikoku backarc basin opening. Contributions to Mineralogy and Petrology, 163(3): 483–504. doi: 10.1007/s00410-011-0680-x
    [18]
    Heki K, Miyazaki S I. 2001. Plate convergence and long-term crustal deformation in central Japan. Geophysical Research Letters, 28(12): 2313–2316. doi: 10.1029/2000GL012537
    [19]
    Hickey-Vargas R. 1991. Isotope characteristics of submarine lavas from the Philippine Sea: implications for the origin of arc and basin magmas of the Philippine tectonic plate. Earth and Planetary Science Letters, 107(2): 290–304. doi: 10.1016/0012-821X(91)90077-U
    [20]
    Hickey-Vargas R. 1998. Origin of the Indian Ocean-type isotopic signature in basalts from Philippine sea plate spreading centers: an assessment of local versus large-scale processes. Journal of Geophysical Research: Solid Earth, 103(B9): 20963–20979. doi: 10.1029/98JB02052
    [21]
    Hochstaedter A, Gill J, Peters R, et al. 2001. Across-arc geochemical trends in the Izu-Bonin arc: Contributions from the subducting slab. Geochemistry, Geophysics, Geosystems, 2(7): 1019. doi: 10.1029/2000GC000105
    [22]
    Hochstaedter A G, Gill J B, Taylor B, et al. 2000. Across-arc geochemical trends in the Izu-Bonin arc: Constraints on source composition and mantle melting. Journal of Geophysical Research: Solid Earth, 105(B1): 495–512. doi: 10.1029/1999JB900125
    [23]
    Idini B, Rojas F, Ruiz S, et al. 2017. Ground motion prediction equations for the Chilean subduction zone. Bulletin of Earthquake Engineering, 15(5): 1853–1880. doi: 10.1007/s10518-016-0050-1
    [24]
    Ishizuka O, Hickey-Vargas R, Arculus R J, et al. 2018. Age of Izu–Bonin–Mariana arc basement. Earth and Planetary Science Letters, 481: 80–90. doi: 10.1016/j.jpgl.2017.10.023
    [25]
    Ishizuka O, Taylor R N, Milton J A, et al. 2003. Fluid–mantle interaction in an intra-oceanic arc: Constraints from high-precision Pb isotopes. Earth and Planetary Science Letters, 211(3–4): 221–236. doi: 10.1016/S0012-821X(03)00201-2
    [26]
    Ishizuka O, Uto K, Yuasa M, et al. 1998. K-Ar ages from seamount chains in the back-arc region of the Izu–Ogasawara arc. Island Arc, 7(3): 408–421. doi: 10.1111/j.1440-1738.1998.00199.x
    [27]
    Ishizuka O, Taylor R N, Yuasa M, et al. 2011. Making and breaking an island arc: A new perspective from the oligocene Kyushu-Palau Arc, Philippine sea. Geochemistry, Geophysics, Geosystems, 12(5): Q05005. doi: 10.1029/2010GC003440
    [28]
    Ishizuka O, Yuasa M, Taylor R N, et al. 2009. Two contrasting magmatic types coexist after the cessation of back-arc spreading. Chemical Geology, 266(3–4): 274–296. doi: 10.1016/j.chemgeo.2009.06.014
    [29]
    Kakubuchi S, Nagao T, Nagao K. 2000. K-Ar ages and magmatic history of the Abu Monogenetic Volcano Group, southwest Japan. Japanese Magazine of Mineralogical and Petrological Sciences, 29(5): 191–198. doi: 10.2465/gkk.29.191
    [30]
    Kimura J I, Kent A J R, Rowe M C, et al. 2010. Origin of cross-chain geochemical variation in Quaternary lavas from the northern Izu arc: Using a quantitative mass balance approach to identify mantle sources and mantle wedge processes. Geochemistry, Geophysics, Geosystems, 11(10): Q10011. doi: 10.1029/2010GC003050
    [31]
    Kobayashi K, Kasuga S, Okino K. 1995. Shikoku basin and its margins, In: Taylor B, ed. Backarc Basins. Boston, MA: Springer, 381–405
    [32]
    Kodaira S, Iidaka T, Kato A, et al. 2004. High pore fluid pressure may cause silent slip in the Nankai trough. Science, 304(5675): 1295–1298. doi: 10.1126/science.1096535
    [33]
    Kodaira S, Iidaka T, Nakanishi A, et al. 2005. Onshore-offshore seismic transect from the eastern Nankai Trough to central Japan crossing a zone of the Tokai slow slip event. Earth, Planets and Space, 57(10): 943–959. doi: 10.1186/BF03351874
    [34]
    Kodaira S, Kurashimo E, Park J O, et al. 2002. Structural factors controlling the rupture process of a megathrust earthquake at the Nankai Trough seismogenic zone. Geophysical Journal International, 149(3): 815–835. doi: 10.1046/j.1365-246X.2002.01691.x
    [35]
    Kodaira S, Takahashi N, Park J O, et al. 2000. Western Nankai Trough seismogenic zone: Results from a wide-angle ocean bottom seismic survey. Journal of Geophysical Research: Solid Earth, 105(B3): 5887–5905. doi: 10.1029/1999JB900394
    [36]
    Lallemand S, Heuret A, Boutelier D. 2005. On the relationships between slab dip, back-arc stress, upper plate absolute motion, and crustal nature in subduction zones. Geochemistry, Geophysics, Geosystems, 6(9): Q09006
    [37]
    Lee W H K. 1964. International heat flow committee. Eos, Transactions American Geophysical Union, 45(3): 441–444. doi: 10.1029/TR045i003p00441
    [38]
    Li K. 1997. Crustal structure of north Kyushu-Palau Ridge by ocean bottom seismographic observation. Proceedings of Seismological Society of Japan, 2: 38
    [39]
    Liu X, Zhao D P. 2014. Structural control on the nucleation of megathrust earthquakes in the Nankai subduction zone. Geophysical Research Letters, 41(23): 8288–8293. doi: 10.1002/2014GL062002
    [40]
    Mason W G, Moresi L, Betts P G, et al. 2010. Three-dimensional numerical models of the influence of a buoyant oceanic plateau on subduction zones. Tectonophysics, 483(1–2): 71–79. doi: 10.1016/j.tecto.2009.08.021
    [41]
    Matsuda T. 1980. Traces of Izu Peninsula—its direction of movement during the recent several million years. Earth Monthly, 2: 164–168
    [42]
    Maus S, Barckhausen U, Berkenbosch H, et al. 2009. EMAG2: A 2–arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements. Geochemistry, Geophysics, Geosystems, 10(8): Q08005. doi: 10.1029/2009GC002471
    [43]
    Miyashiro A. 1974. Volcanic rock series in island arcs and active continental margins. American Journal of Science, 274(4): 321–355. doi: 10.2475/ajs.274.4.321
    [44]
    Morris P A. 1995. Slab melting as an explanation of Quaternary volcanism and aseismicity in southwest Japan. Geology, 23(5): 395–398. doi: 10.1130/0091-7613(1995)023<0395:SMAAEO>2.3.CO;2
    [45]
    Nakajima J, Hasegawa A. 2007. Tomographic evidence for the mantle upwelling beneath southwestern Japan and its implications for arc magmatism. Earth and Planetary Science Letters, 254(1–2): 90–105. doi: 10.1016/j.jpgl.2006.11.024
    [46]
    Nakamura Y, Shibutani T. 1998. Three-dimensional shear wave velocity structure in the upper mantle beneath the Philippine Sea region. Earth, Planets and Space, 50(11–12): 939–952. doi: 10.1186/BF03352189
    [47]
    Nakamura K, Shimazaki K, Yonekura N. 1984. Subduction, bending and education; present and Quaternary tectonics of the northern border of the Philippine Sea Plate. Bulletin de la Société Géologique de France, S7-XXVI(2): 221–243. doi: 10.2113/gssgfbull.S7-XXVI.2.221
    [48]
    Nakanishi A, Shiobara H, Hino R, et al. 1998. Detailed subduction structure across the eastern Nankai Trough obtained from ocean bottom seismographic profiles. Journal of Geophysical Research: Solid Earth, 103(B11): 27151–27168. doi: 10.1029/98JB02344
    [49]
    Nakanishi A, Takahashi N, Park J O, et al. 2002. Crustal structure across the coseismic rupture zone of the 1944 Tonankai earthquake, the central Nankai Trough seismogenic zone. Journal of Geophysical Research: Solid Earth, 107(B1): EPM 2-1–EPM 2-21. doi: 10.1029/2001JB000424
    [50]
    Nishizawa A, Kaneda K, Oikawa M. 2009. Seismic structure of the northern end of the Ryukyu Trench subduction zone, southeast of Kyushu, Japan. Earth, Planets and Space, 61(8): e37–e40. doi: 10.1186/BF03352942
    [51]
    Nishizawa A, Kaneda K, Oikawa M, et al. 2017. Variations in seismic velocity distribution along the Ryukyu (Nansei-Shoto) Trench subduction zone at the northwestern end of the Philippine Sea plate. Earth, Planets and Space, 69: 86. doi: 10.1186/s40623-017-0674-7
    [52]
    Niu Yaoling, O’Hara M J, Pearce J A. 2003. Initiation of subduction zones as a consequence of lateral compositional buoyancy contrast within the lithosphere: A petrological perspective. Journal of Petrology, 44(5): 851–866. doi: 10.1093/petrology/44.5.851
    [53]
    Niu Xiongwei, Zhao Dapeng, Isozaki Y, et al. 2020. Structural heterogeneity and megathrust earthquakes in Southwest Japan. Physics of the Earth and Planetary Interiors, 298: 106347. doi: 10.1016/j.pepi.2019.106347
    [54]
    Okamura Y. 1988. Subduction of seamount and paleosubduction direction of the Philippine Sea Plate. Earth Monthly, 10: 603–607
    [55]
    Okino K, Ohara Y, Kasuga S, et al. 1999. The Philippine Sea: New survey results reveal the structure and the history of the marginal basins. Geophysical Research Letters, 26(15): 2287–2290. doi: 10.1029/1999GL900537
    [56]
    Okino K, Shimakawa Y, Nagaoka S. 1994. Evolution of the Shikoku basin. Journal of Geomagnetism and Geoelectricity, 46(6): 463–479. doi: 10.5636/jgg.46.463
    [57]
    Park J O, Hori T, Kaneda Y. 2009. Seismotectonic implications of the Kyushu-Palau Ridge subducting beneath the westernmost Nankai forearc. Earth, Planets and Space, 61(8): 1013–1018. doi: 10.1186/BF03352951
    [58]
    Park J O, Tsuru T, Takahashi N, et al. 2002. A deep strong reflector in the Nankai accretionary wedge from multichannel seismic data: Implications for underplating and interseismic shear stress release. Journal of Geophysical Research: Solid Earth, 107(B4): ESE 3-1–ESE 3-16. doi: 10.1029/2001JB000262
    [59]
    Pautot G, Rangin C. 1989. Subduction of the South China Sea axial ridge below Luzon (Philippines). Earth and Planetary Science Letters, 92(1): 57–69. doi: 10.1016/0012-821X(89)90020-4
    [60]
    Peacock S M, Rushmer T, Thompson A B. 1994. Partial melting of subducting oceanic crust. Earth and Planetary Science Letters, 121(1–2): 227–244. doi: 10.1016/0012-821X(94)90042-6
    [61]
    Pusok A E, Kaus B J P, Popov A A. 2018. The effect of rheological approximations in 3-D numerical simulations of subduction and collision. Tectonophysics, 746: 296–311. doi: 10.1016/j.tecto.2018.04.017
    [62]
    Sagiya T, Thatcher W. 1999. Coseismic slip resolution along a plate boundary megathrust: The Nankai Trough, southwest Japan. Journal of Geophysical Research: Solid Earth, 104(B1): 1111–1129. doi: 10.1029/98JB02644
    [63]
    Saito S, Arima M, Nakajima T, et al. 2007. Formation of distinct granitic magma batches by partial melting of hybrid lower crust in the Izu arc collision zone, central Japan. Journal of Petrology, 48(9): 1761–1791. doi: 10.1093/petrology/egm037
    [64]
    Saito S, Arima M, Nakajima T, et al. 2012. Petrogenesis of the Kaikomagatake granitoid pluton in the Izu Collision Zone, central Japan: implications for transformation of juvenile oceanic arc into mature continental crust. Contributions to Mineralogy and Petrology, 163(4): 611–629. doi: 10.1007/s00410-011-0689-1
    [65]
    Saito S, Tani K. 2017. Transformation of juvenile Izu–Bonin–Mariana oceanic arc into mature continental crust: an example from the Neogene Izu collision zone granitoid plutons, Central Japan. Lithos, 277: 228–240. doi: 10.1016/j.lithos.2016.07.035
    [66]
    Sandwell D T, Müller R D, Smith W H F, et al. 2014. New global marine gravity model from cryosat-2 and jason-1 reveals buried tectonic structure. Science, 346(6205): 65–67. doi: 10.1126/science.1258213
    [67]
    Sandwell D T, Smith W H F. 2009. Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge segmentation versus spreading rate. Journal of Geophysical Research: Solid Earth, 114(B1): B01411. doi: 10.1029/2008JB006008
    [68]
    Sato H, Machida S, Kanayama S, et al. 2002. Geochemical and isotopic characteristics of the Kinan Seamount Chain in the Shikoku Basin. Geochemical Journal, 36(5): 519–526. doi: 10.2343/geochemj.36.519
    [69]
    Shibata T, Yoshikawa M, Ujike O, et al. 2014. Along-arc geochemical variations in Quaternary magmas of northern Kyushu Island, Japan. Geological Society, London, Special Publications, 385(1): 15–29. doi: 10.1144/SP385.13
    [70]
    Soh W, Nakayama K, Kimura T. 1998. Arc–arc collision in the Izu collision zone, central Japan, deduced from the Ashigara Basin and adjacent Tanzawa Mountains. Island Arc, 7(3): 330–341. doi: 10.1111/j.1440-1738.1998.00193.x
    [71]
    Sun Weidong, Arculus R J, Kamenetsky V S, et al. 2004. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization. Nature, 431(7011): 975–978. doi: 10.1038/nature02972
    [72]
    Sun Weidong, Ling Mingxing, Yang Xiaoyong, et al. 2010. Ridge subduction and porphyry copper-gold mineralization: An overview. Science China Earth Sciences, 53(4): 475–484. doi: 10.1007/s11430-010-0024-0
    [73]
    Sun Weidong, Zhang Hong, Ling Mingxing, et al. 2011. The genetic association of adakites and Cu–Au ore deposits. International Geology Review, 53(5–6): 691–703. doi: 10.1080/00206814.2010.507362
    [74]
    Tabei T, Hashimoto M, Miyazaki S, et al. 2003. Present-day deformation across the southwest Japan arc: Oblique subduction of the Philippine Sea plate and lateral slip of the Nankai forearc. Earth, Planets and Space, 55(10): 643–647. doi: 10.1186/BF03352471
    [75]
    Takahashi N, Kodaira S, Nakanishi A, et al. 2002. Seismic structure of western end of the Nankai Trough seismogenic zone. Journal of Geophysical Research: Solid Earth, 107(B10): ESE 2-1–ESE 2-19. doi: 10.1029/2000JB000121
    [76]
    Talwani M, Worzel J L, Landisman M. 1959. Rapid gravity computations for two-dimensional bodies with application to the Mendocino submarine fracture zone. Journal of Geophysical Research, 64(1): 49–59. doi: 10.1029/JZ064i001p00049
    [77]
    Tang Yong, Li Mingbi, Li Jiabiao, et al. 2011. The geomorphological features and continuity of the Kyushu-Palau Ridge (KPR). Acta Oceanologica Sinica, 30(5): 114–124. doi: 10.1007/s13131-011-0136-1
    [78]
    Wessel P, Smith W H. 1995. New version of generic mapping tools released. Eos, Transactions of the American Geophysical Union, 76(33): 329. doi: 10.1029/95EO00198
    [79]
    Wu Song, Zheng Youye, Sun Xiang. 2016. Subduction metasomatism and collision-related metamorphic dehydration controls on the fertility of porphyry copper ore-forming high Sr/Y magma in Tibet. Ore Geology Reviews, 73: 83–103. doi: 10.1016/j.oregeorev.2015.10.023
    [80]
    Xu Jiren, Zhao Zhixin, Kono Y, et al. 2003. Regional characteristics of stress field and its dynamics in and around the Nankai Trough, Japan. Chinese Journal of Geophysics (in Chinese), 46(4): 488–494
    [81]
    Yagi Y, Kikuchi M, Yoshida S, et al. 1998. Source process of the Hyuga-nada earthquake of April 1, 1968 (MW 7.5), and its relationship to the subsequent seismicity. Zisin, 51(1): 139–148. doi: 10.4294/zisin1948.51.1_139
    [82]
    Yamamoto Y, Obana K, Takahashi T, et al. 2013. Imaging of the subducted Kyushu-Palau Ridge in the Hyuga-nada region, western Nankai Trough subduction zone. Tectonophysics, 589: 90–102. doi: 10.1016/j.tecto.2012.12.028
    [83]
    Yan Quanshu, Shi Xuefa. 2011. Geological comparative studies of Japan arc system and Kyushu-Palau Arc. Acta Oceanologica Sinica, 30(4): 107–121. doi: 10.1007/s13131-011-0134-3
    [84]
    Yogodzinski G M, Lees J M, Churikova T G, et al. 2001. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges. Nature, 409(6819): 500–504. doi: 10.1038/35054039
    [85]
    Zang Shaoxian, Ning Jieyuan. 2002. Interaction between the Philippine Sea plate and the Eurasia plate and its influence on the tectonics of eastern Asia. Chinese Journal of Geophysics, 45(2): 184–194. doi: 10.1002/cjg2.231
    [86]
    Zhang Jie, Li Jiabiao, Ding Weiwei. 2012. Reviews of the study on crustal structure and evolution of the Kyushu-Palau Ridge. Advances in Marine Science (in Chinese), 30(4): 595–607
    [87]
    Zhao Dapeng, Yanada T, Hasegawa A, et al. 2012. Imaging the subducting slabs and mantle upwelling under the Japan Islands. Geophysical Journal International, 190(2): 816–828. doi: 10.1111/j.1365-246X.2012.05550.x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (1461) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return