Volume 40 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
Manli Guo, Ruiyi Chen, Hongzhou Xu, Philip A Vetter. Dynamical features of near-inertial motions in global ocean based on the GDP dataset from 2000 to 2019[J]. Acta Oceanologica Sinica, 2021, 40(1): 126-134. doi: 10.1007/s13131-020-1675-0
Citation: Manli Guo, Ruiyi Chen, Hongzhou Xu, Philip A Vetter. Dynamical features of near-inertial motions in global ocean based on the GDP dataset from 2000 to 2019[J]. Acta Oceanologica Sinica, 2021, 40(1): 126-134. doi: 10.1007/s13131-020-1675-0

Dynamical features of near-inertial motions in global ocean based on the GDP dataset from 2000 to 2019

doi: 10.1007/s13131-020-1675-0
Funds:  The Global Change and Air-Sea Interaction Project under contract No. GASI-IPOVAI-01-03; the National Key Research and Development Program under contract Nos 2016YFC1401403 and 2018YFC0309800; the National Natural Science Foundation of China under contract Nos 41576009 and 41576006; the Strategic Priority Research Program of the CAS under contract No. XDA13030302; the Chinese Academy of Sciences Frontier Basic Research Project under contract No. QYJC201910.
More Information
  • Corresponding author: E-mail: hzxu@idsse.ac.cn
  • Received Date: 2020-07-04
  • Accepted Date: 2020-08-18
  • Available Online: 2021-04-21
  • Publish Date: 2021-01-25
  • Based on the latest oceanic surface drifter dataset from the global drifter program during 2000–2019, this study investigated the global variation of relative frequency shift (RFS), near-inertial energy (NIE) and inverse excess bandwidth (IEB) of near-inertial motions, and analyzed their relations with oceanic mesoscale dynamics, relative vorticity and strain. Compared with previous works, we have some new findings in this study: (1) the RFS was high with negative values in some regions in which we found a significant blue shift of the RFS in the equatorward of 30°N (S) and from 50°N to 60°N in the Pacific, and a red shift in the western boundary currents and their extension regions, the North Atlantic and the Antarctic Circumpolar Current regions; (2) more peak values of the NIE were found in global regions like the South Indian Ocean, the Luzon Strait and some areas of the South Ocean; (3) the global distribution of the IEB were characterized by clear zonal bands and affected by vorticity and wind field; (4) the RFS was elevated as the absolute value of the gradient of vorticity increased, the IEB did not depend on the gradient of vorticity, and the eddy kinetic energy (EKE) weakened with the decrease of the absolute value of RFS; (5) the NIE decreased with increasing absolute value of the relative vorticity and the gradient of vorticity, but it increased with increasing strain and EKE when EKE was larger than 0.003 2 m2/s2.
  • loading
  • [1]
    Alford M H. 2001. Internal swell generation: The spatial distribution of energy flux from the wind to mixed layer near-inertial motions. Journal of Physical Oceanography, 31(8): 2359–2368. doi: 10.1175/1520-0485(2001)031<2359:ISGTSD>2.0.CO;2
    [2]
    Alford M H. 2003. Improved global maps and 54-year history of wind-work on ocean inertial motions. Geophysical Research Letters, 30(8): 1424. doi: 10.1029/2002GL016614
    [3]
    Alford M H, MacKinnon J A, Simmons H L, et al. 2016. near-inertial internal gravity waves in the ocean. Annual Review of Marine Science, 8: 95–123. doi: 10.1146/annurev-marine-010814-015746
    [4]
    Chaigneau A, Pizarro O, Rojas W. 2008. Global climatology of near-inertial current characteristics from Lagrangian observations. Geophysical Research Letters, 35(13): L13603. doi: 10.1029/2008GL034060
    [5]
    Chang E K M, Lee S, Swanson K L. 2002. Storm track dynamics. Journal of Climate, 15(16): 2163–2183. doi: 10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2
    [6]
    Chelton D B, Schlax M G, Samelson R M. 2011. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2): 167–216. doi: 10.1016/j.pocean.2011.01.002
    [7]
    Chen Shengli, Chen Daoyi, Xing Jiuxing. 2017. A study on some basic features of inertial oscillations and near-inertial internal waves. Ocean Science, 13(5): 829–836. doi: 10.5194/os-13-829-2017
    [8]
    Chen Gengxin, Xue Huijie, Wang Dongxiao, et al. 2013. Observed near-inertial kinetic energy in the northwestern South China Sea. Journal of Geophysical Research: Oceans, 118(10): 4965–4977. doi: 10.1002/jgrc.20371
    [9]
    Cheng Y H, Ho C R, Zheng Quanan, et al. 2014. Statistical characteristics of mesoscale eddies in the north pacific derived from satellite altimetry. Remote Sensing, 6(6): 5164–5183. doi: 10.3390/rs6065164
    [10]
    D'Asaro E A. 1995. Upper-ocean inertial currents forced by a strong storm. Part III: Interaction of inertial currents and mesoscale eddies. Journal of Physical Oceanography, 25(11): 2953–2958. doi: 10.1175/1520-0485(1995)025<2953:UOICFB>2.0.CO;2
    [11]
    Egbert G D, Erofeeva S Y. 2002. Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19(2): 183–204. doi: 10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
    [12]
    Elipot S, Lumpkin R. 2008. Spectral description of oceanic near-surface variability. Geophysical Research Letters, 35(5): L05606
    [13]
    Elipot S, Lumpkin R, Perez R C, et al. 2016. A global surface drifter data set at hourly resolution. Journal of Geophysical Research: Oceans, 121(5): 2937–2966. doi: 10.1002/2016JC011716
    [14]
    Elipot S, Lumpkin R, Prieto G. 2010. Modification of inertial oscillations by the mesoscale eddy field. Journal of Geophysical Research: Oceans, 115(9): C09010
    [15]
    Ferrari R, Wunsch C. 2009. Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annual Review of Fluid Mechanics, 41: 253–282. doi: 10.1146/annurev.fluid.40.111406.102139
    [16]
    Fu L L. 1981. Observations and models of inertial waves in the deep ocean. Reviews of Geophysics, 19(1): 141–170. doi: 10.1029/RG019i001p00141
    [17]
    Garrett C. 2001. What is the “near-inertial” band and why is it different from the rest of the internal wave spectrum?. Journal of Physical Oceanography, 31(4): 962–971. doi: 10.1175/1520-0485(2001)031<0962:WITNIB>2.0.CO;2
    [18]
    Holte J, Talley L D, Gilson J, et al. 2017. An Argo mixed layer climatology and database. Geophysical Research Letters, 44(11): 5618–5626. doi: 10.1002/2017GL073426
    [19]
    Hsu M K, Liu A K. 2000. Nonlinear internal waves in the South China Sea. Canadian Journal of Remote Sensing, 26(2): 72–81. doi: 10.1080/07038992.2000.10874757
    [20]
    Jeon C, Park J H, Nakamura H, et al. 2019. Poleward-propagating near-inertial waves enabled by the western boundary current. Scientific Reports, 9: 9955. doi: 10.1038/s41598-019-46364-9
    [21]
    Jiang Jing, Lu Youyu, Perrie W. 2005. Estimating the energy flux from the wind to ocean inertial motions: The sensitivity to surface wind fields. Geophysical Research Letters, 32(15): L15610. doi: 10.1029/2005GL023289
    [22]
    Jing Zhao, Wu Lixin, Ma Xiaohui. 2017. Energy exchange between the mesoscale oceanic eddies and wind-forced near-inertial oscillations. Journal of Physical Oceanography, 47(3): 721–733. doi: 10.1175/JPO-D-16-0214.1
    [23]
    Jochum M, Briegleb B, Danabasoglu G, et al. 2013. The impact of oceanic near-inertial waves on climate. Journal of Climate, 26(9): 2833–2844. doi: 10.1175/JCLI-D-12-00181.1
    [24]
    Kim S Y, Kosro P M, Kurapov A L. 2014. Evaluation of directly wind-coherent near-inertial surface currents off Oregon using a statistical parameterization and analytical and numerical models. Journal of Geophysical Research: Oceans, 119(10): 6631–6654. doi: 10.1002/2014JC010115
    [25]
    Kunze E. 1985. Near-inertial wave propagation in geostrophic shear. Journal of Physical Oceanography, 15(5): 544–565. doi: 10.1175/1520-0485(1985)015<0544:NIWPIG>2.0.CO;2
    [26]
    Li Zhuhua, Von Storch J S, Müller M. 2015. The M2 internal tide simulated by a 1/10° OGCM. Journal of Physical Oceanography, 45(12): 3119–3135. doi: 10.1175/JPO-D-14-0228.1
    [27]
    Liu Yongzheng, Jing Zhao, Wu Lixin. 2019. Wind power on oceanic near-inertial oscillations in the global ocean estimated from surface drifters. Geophysical Research Letters, 46(5): 2647–2653. doi: 10.1029/2018GL081712
    [28]
    Park J J, Kim K, Schmitt R W. 2009. Global distribution of the decay timescale of mixed layer inertial motions observed by satellite-tracked drifters. Journal of Geophysical Research: Oceans, 114(11): C11010
    [29]
    Polzin K L. 2008. Mesoscale eddy-internal wave coupling. Part I: Symmetry, wave capture, and results from the mid-ocean dynamics experiment. Journal of Physical Oceanography, 38(11): 2556–2574. doi: 10.1175/2008JPO3666.1
    [30]
    Polzin K L. 2010. Mesoscale eddy-internal wave coupling. part II: energetics and results from PolyMode. Journal of Physical Oceanography, 40(4): 789–801. doi: 10.1175/2009JPO4039.1
    [31]
    Prieto G A, Parker R L, Thomson D J, et al. 2007. Reducing the bias of multitaper spectrum estimates. Geophysical Journal International, 171(3): 1269–1281. doi: 10.1111/j.1365-246X.2007.03592.x
    [32]
    Rimac A, Von Storch J S, Eden C, et al. 2013. The influence of high-resolution wind stress field on the power input to near-inertial motions in the ocean. Geophysical Research Letters, 40(18): 4882–4886. doi: 10.1002/grl.50929
    [33]
    Simmons H L, Alford M H. 2012. Simulating the long-range swell of internal waves generated by ocean storms. Oceanography, 25(2): 30–41. doi: 10.5670/oceanog.2012.39
    [34]
    van Meurs P. 1998. Interactions between near-inertial mixed layer currents and the mesoscale: The importance of spatial variabilities in the vorticity field. Journal of Physical Oceanography, 28(7): 1363–1388. doi: 10.1175/1520-0485(1998)028<1363:IBNIML>2.0.CO;2
    [35]
    Watanabe M, Hibiya T. 2002. Global estimates of the wind-induced energy flux to inertial motions in the surface mixed layer. Geophysical Research Letters, 29(8): 1239
    [36]
    Whalen C B, MacKinnon J A, Talley L D. 2018. Large-scale impacts of the mesoscale environment on mixing from wind-driven internal waves. Nature Geoscience, 11(11): 842–847. doi: 10.1038/s41561-018-0213-6
    [37]
    Young W R, Jelloul M B. 1997. Propagation of near-inertial oscillations through a geostrophic flow. Journal of Marine Research, 55(4): 735–766. doi: 10.1357/0022240973224283
    [38]
    Zhang Zhiwei, Qiu Bo, Tian Jiwei, et al. 2018. Latitude-dependent finescale turbulent shear generations in the Pacific tropical-extratropical upper ocean. Nature Communications, 9: 4086. doi: 10.1038/s41467-018-06260-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (390) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return